The added-value of remotely-sensed soil moisture data for agricultural drought detection in Argentina
- Autores
 - Salvia, Maria Mercedes; Sanchez, Nilda; Piles, María; Ruscica, Romina; González Zamora, Ángel; Roitberg, Esteban Gabriel; Martinez Fernandez, Jose
 - Año de publicación
 - 2021
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - In countries where the economy relies mostly on agricultural-livestock activities, such as Argentina, droughts cause significant economic losses. Currently, the most-used drought indices by the Argentinian National Meteorological and Hydrological Services are based on field precipitation data, such as the standardized precipitation index (SPI) and the standardized precipitation evapotranspiration index (SPEI). In this article, we explored the performance of the satellite-based soil moisture agricultural drought index (SMADI) for agricultural drought detection in Argentina during 2010-2015, and compared it with the one from the standardized soil moisture anomalies (SSMA), SPI and SPEI (at one-month and three-month temporal scales), using the Agricultural Ministry's drought emergency database as a benchmark. The performances were analyzed in terms of the suitability of each index to be included in an early warning system for agricultural droughts, including true positive rate (TPR), and both false positive and false negative rates. In our experiments, SMADI showed the best overall performance, with the highest TPR and F1-score, and the second best false positive rate (FPR), positive predictive value, and overall accuracy. SMADI also showed the largest difference between TPR and FPR. SSMA showed the lowest FPR, but also the lowest TPR, making it not useful for an alert system. Furthermore, field precipitation-based indices, yet simple and widely used, showed not to be suitable indicators for detection of agricultural drought for Argentina, neither in the one-month nor in the three-month scale.
Fil: Salvia, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Sanchez, Nilda. Universidad de Salamanca; España
Fil: Piles, María. Universidad de Valencia; España
Fil: Ruscica, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
Fil: González Zamora, Ángel. Universidad de Salamanca; España
Fil: Roitberg, Esteban Gabriel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Martinez Fernandez, Jose. Universidad de Salamanca; España - Materia
 - 
            
        AGRICULTURAL DROUGHT DETECTION
ARGENTINA
SOIL MOISTURE AGRICULTURAL DROUGHT INDEX (SMADI)
STANDARDIZED PRECIPITATION EVAPOTRANSPIRATION INDEX (SPEI)
STANDARDIZED PRECIPITATION INDEX (SPI)
STANDARDIZED SOIL MOISTURE ANOMALIES (SSMA) - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - https://creativecommons.org/licenses/by/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Consejo Nacional de Investigaciones Científicas y Técnicas
 - OAI Identificador
 - oai:ri.conicet.gov.ar:11336/163464
 
Ver los metadatos del registro completo
| id | 
                                CONICETDig_01aeff674eda41ab79ed7e191ad760b6 | 
      
|---|---|
| oai_identifier_str | 
                                oai:ri.conicet.gov.ar:11336/163464 | 
      
| network_acronym_str | 
                                CONICETDig | 
      
| repository_id_str | 
                                3498 | 
      
| network_name_str | 
                                CONICET Digital (CONICET) | 
      
| spelling | 
                                The added-value of remotely-sensed soil moisture data for agricultural drought detection in ArgentinaSalvia, Maria MercedesSanchez, NildaPiles, MaríaRuscica, RominaGonzález Zamora, ÁngelRoitberg, Esteban GabrielMartinez Fernandez, JoseAGRICULTURAL DROUGHT DETECTIONARGENTINASOIL MOISTURE AGRICULTURAL DROUGHT INDEX (SMADI)STANDARDIZED PRECIPITATION EVAPOTRANSPIRATION INDEX (SPEI)STANDARDIZED PRECIPITATION INDEX (SPI)STANDARDIZED SOIL MOISTURE ANOMALIES (SSMA)https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In countries where the economy relies mostly on agricultural-livestock activities, such as Argentina, droughts cause significant economic losses. Currently, the most-used drought indices by the Argentinian National Meteorological and Hydrological Services are based on field precipitation data, such as the standardized precipitation index (SPI) and the standardized precipitation evapotranspiration index (SPEI). In this article, we explored the performance of the satellite-based soil moisture agricultural drought index (SMADI) for agricultural drought detection in Argentina during 2010-2015, and compared it with the one from the standardized soil moisture anomalies (SSMA), SPI and SPEI (at one-month and three-month temporal scales), using the Agricultural Ministry's drought emergency database as a benchmark. The performances were analyzed in terms of the suitability of each index to be included in an early warning system for agricultural droughts, including true positive rate (TPR), and both false positive and false negative rates. In our experiments, SMADI showed the best overall performance, with the highest TPR and F1-score, and the second best false positive rate (FPR), positive predictive value, and overall accuracy. SMADI also showed the largest difference between TPR and FPR. SSMA showed the lowest FPR, but also the lowest TPR, making it not useful for an alert system. Furthermore, field precipitation-based indices, yet simple and widely used, showed not to be suitable indicators for detection of agricultural drought for Argentina, neither in the one-month nor in the three-month scale.Fil: Salvia, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Sanchez, Nilda. Universidad de Salamanca; EspañaFil: Piles, María. Universidad de Valencia; EspañaFil: Ruscica, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; ArgentinaFil: González Zamora, Ángel. Universidad de Salamanca; EspañaFil: Roitberg, Esteban Gabriel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Martinez Fernandez, Jose. Universidad de Salamanca; EspañaInstitute of Electrical and Electronics Engineers2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/163464Salvia, Maria Mercedes; Sanchez, Nilda; Piles, María; Ruscica, Romina; González Zamora, Ángel; et al.; The added-value of remotely-sensed soil moisture data for agricultural drought detection in Argentina; Institute of Electrical and Electronics Engineers; IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing; 14; 5-2021; 6487-65001939-1404CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9444130info:eu-repo/semantics/altIdentifier/doi/10.1109/JSTARS.2021.3084849info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:10:37Zoai:ri.conicet.gov.ar:11336/163464instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:10:37.553CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
      
| dc.title.none.fl_str_mv | 
                                The added-value of remotely-sensed soil moisture data for agricultural drought detection in Argentina | 
      
| title | 
                                The added-value of remotely-sensed soil moisture data for agricultural drought detection in Argentina | 
      
| spellingShingle | 
                                The added-value of remotely-sensed soil moisture data for agricultural drought detection in Argentina Salvia, Maria Mercedes AGRICULTURAL DROUGHT DETECTION ARGENTINA SOIL MOISTURE AGRICULTURAL DROUGHT INDEX (SMADI) STANDARDIZED PRECIPITATION EVAPOTRANSPIRATION INDEX (SPEI) STANDARDIZED PRECIPITATION INDEX (SPI) STANDARDIZED SOIL MOISTURE ANOMALIES (SSMA)  | 
      
| title_short | 
                                The added-value of remotely-sensed soil moisture data for agricultural drought detection in Argentina | 
      
| title_full | 
                                The added-value of remotely-sensed soil moisture data for agricultural drought detection in Argentina | 
      
| title_fullStr | 
                                The added-value of remotely-sensed soil moisture data for agricultural drought detection in Argentina | 
      
| title_full_unstemmed | 
                                The added-value of remotely-sensed soil moisture data for agricultural drought detection in Argentina | 
      
| title_sort | 
                                The added-value of remotely-sensed soil moisture data for agricultural drought detection in Argentina | 
      
| dc.creator.none.fl_str_mv | 
                                Salvia, Maria Mercedes Sanchez, Nilda Piles, María Ruscica, Romina González Zamora, Ángel Roitberg, Esteban Gabriel Martinez Fernandez, Jose  | 
      
| author | 
                                Salvia, Maria Mercedes | 
      
| author_facet | 
                                Salvia, Maria Mercedes Sanchez, Nilda Piles, María Ruscica, Romina González Zamora, Ángel Roitberg, Esteban Gabriel Martinez Fernandez, Jose  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Sanchez, Nilda Piles, María Ruscica, Romina González Zamora, Ángel Roitberg, Esteban Gabriel Martinez Fernandez, Jose  | 
      
| author2_role | 
                                author author author author author author  | 
      
| dc.subject.none.fl_str_mv | 
                                AGRICULTURAL DROUGHT DETECTION ARGENTINA SOIL MOISTURE AGRICULTURAL DROUGHT INDEX (SMADI) STANDARDIZED PRECIPITATION EVAPOTRANSPIRATION INDEX (SPEI) STANDARDIZED PRECIPITATION INDEX (SPI) STANDARDIZED SOIL MOISTURE ANOMALIES (SSMA)  | 
      
| topic | 
                                AGRICULTURAL DROUGHT DETECTION ARGENTINA SOIL MOISTURE AGRICULTURAL DROUGHT INDEX (SMADI) STANDARDIZED PRECIPITATION EVAPOTRANSPIRATION INDEX (SPEI) STANDARDIZED PRECIPITATION INDEX (SPI) STANDARDIZED SOIL MOISTURE ANOMALIES (SSMA)  | 
      
| purl_subject.fl_str_mv | 
                                https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1  | 
      
| dc.description.none.fl_txt_mv | 
                                In countries where the economy relies mostly on agricultural-livestock activities, such as Argentina, droughts cause significant economic losses. Currently, the most-used drought indices by the Argentinian National Meteorological and Hydrological Services are based on field precipitation data, such as the standardized precipitation index (SPI) and the standardized precipitation evapotranspiration index (SPEI). In this article, we explored the performance of the satellite-based soil moisture agricultural drought index (SMADI) for agricultural drought detection in Argentina during 2010-2015, and compared it with the one from the standardized soil moisture anomalies (SSMA), SPI and SPEI (at one-month and three-month temporal scales), using the Agricultural Ministry's drought emergency database as a benchmark. The performances were analyzed in terms of the suitability of each index to be included in an early warning system for agricultural droughts, including true positive rate (TPR), and both false positive and false negative rates. In our experiments, SMADI showed the best overall performance, with the highest TPR and F1-score, and the second best false positive rate (FPR), positive predictive value, and overall accuracy. SMADI also showed the largest difference between TPR and FPR. SSMA showed the lowest FPR, but also the lowest TPR, making it not useful for an alert system. Furthermore, field precipitation-based indices, yet simple and widely used, showed not to be suitable indicators for detection of agricultural drought for Argentina, neither in the one-month nor in the three-month scale. Fil: Salvia, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Sanchez, Nilda. Universidad de Salamanca; España Fil: Piles, María. Universidad de Valencia; España Fil: Ruscica, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina Fil: González Zamora, Ángel. Universidad de Salamanca; España Fil: Roitberg, Esteban Gabriel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Martinez Fernandez, Jose. Universidad de Salamanca; España  | 
      
| description | 
                                In countries where the economy relies mostly on agricultural-livestock activities, such as Argentina, droughts cause significant economic losses. Currently, the most-used drought indices by the Argentinian National Meteorological and Hydrological Services are based on field precipitation data, such as the standardized precipitation index (SPI) and the standardized precipitation evapotranspiration index (SPEI). In this article, we explored the performance of the satellite-based soil moisture agricultural drought index (SMADI) for agricultural drought detection in Argentina during 2010-2015, and compared it with the one from the standardized soil moisture anomalies (SSMA), SPI and SPEI (at one-month and three-month temporal scales), using the Agricultural Ministry's drought emergency database as a benchmark. The performances were analyzed in terms of the suitability of each index to be included in an early warning system for agricultural droughts, including true positive rate (TPR), and both false positive and false negative rates. In our experiments, SMADI showed the best overall performance, with the highest TPR and F1-score, and the second best false positive rate (FPR), positive predictive value, and overall accuracy. SMADI also showed the largest difference between TPR and FPR. SSMA showed the lowest FPR, but also the lowest TPR, making it not useful for an alert system. Furthermore, field precipitation-based indices, yet simple and widely used, showed not to be suitable indicators for detection of agricultural drought for Argentina, neither in the one-month nor in the three-month scale. | 
      
| publishDate | 
                                2021 | 
      
| dc.date.none.fl_str_mv | 
                                2021-05 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://hdl.handle.net/11336/163464 Salvia, Maria Mercedes; Sanchez, Nilda; Piles, María; Ruscica, Romina; González Zamora, Ángel; et al.; The added-value of remotely-sensed soil moisture data for agricultural drought detection in Argentina; Institute of Electrical and Electronics Engineers; IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing; 14; 5-2021; 6487-6500 1939-1404 CONICET Digital CONICET  | 
      
| url | 
                                http://hdl.handle.net/11336/163464 | 
      
| identifier_str_mv | 
                                Salvia, Maria Mercedes; Sanchez, Nilda; Piles, María; Ruscica, Romina; González Zamora, Ángel; et al.; The added-value of remotely-sensed soil moisture data for agricultural drought detection in Argentina; Institute of Electrical and Electronics Engineers; IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing; 14; 5-2021; 6487-6500 1939-1404 CONICET Digital CONICET  | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9444130 info:eu-repo/semantics/altIdentifier/doi/10.1109/JSTARS.2021.3084849  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                https://creativecommons.org/licenses/by/2.5/ar/ | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf application/pdf application/pdf  | 
      
| dc.publisher.none.fl_str_mv | 
                                Institute of Electrical and Electronics Engineers | 
      
| publisher.none.fl_str_mv | 
                                Institute of Electrical and Electronics Engineers | 
      
| dc.source.none.fl_str_mv | 
                                reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas  | 
      
| reponame_str | 
                                CONICET Digital (CONICET) | 
      
| collection | 
                                CONICET Digital (CONICET) | 
      
| instname_str | 
                                Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.name.fl_str_mv | 
                                CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.mail.fl_str_mv | 
                                dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
      
| _version_ | 
                                1847426937075531776 | 
      
| score | 
                                13.10058 |