Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population
- Autores
- Duarte, Damián; Jurcic, Esteban Javier; Dutour, Joaquín; Villalba, Pamela Victoria; Centurión, Carmelo; Grattapaglia, Dario; Cappa, Eduardo Pablo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi-generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.
Fil: Duarte, Damián. UPM Forestal Oriental S.A; Uruguay
Fil: Jurcic, Esteban Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Dutour, Joaquín. UPM Forestal Oriental S.A; Uruguay
Fil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Centurión, Carmelo. UPM Forestal Oriental S.A; Uruguay
Fil: Grattapaglia, Dario. Empresa Brasileira de Pesquisa Agropecuaria;
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina - Materia
-
GENOMIC SELECTION EFFECTIVENESS
SEEDLING STAGE
PREDICTED GENOMIC BREEDING VALUE
OBSERVED BREEDING VALUE
EUCALYPTUS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265897
Ver los metadatos del registro completo
id |
CONICETDig_53c4aaba4fc4e37e08131f2cd80fe0d1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265897 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis populationDuarte, DamiánJurcic, Esteban JavierDutour, JoaquínVillalba, Pamela VictoriaCenturión, CarmeloGrattapaglia, DarioCappa, Eduardo PabloGENOMIC SELECTION EFFECTIVENESSSEEDLING STAGEPREDICTED GENOMIC BREEDING VALUEOBSERVED BREEDING VALUEEUCALYPTUShttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi-generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.Fil: Duarte, Damián. UPM Forestal Oriental S.A; UruguayFil: Jurcic, Esteban Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Dutour, Joaquín. UPM Forestal Oriental S.A; UruguayFil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Centurión, Carmelo. UPM Forestal Oriental S.A; UruguayFil: Grattapaglia, Dario. Empresa Brasileira de Pesquisa Agropecuaria;Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFrontiers Media2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265897Duarte, Damián; Jurcic, Esteban Javier; Dutour, Joaquín; Villalba, Pamela Victoria; Centurión, Carmelo; et al.; Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population; Frontiers Media; Frontiers in Plant Science; 15; 10-2024; 1-161664-462XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fpls.2024.1462285/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fpls.2024.1462285info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:58Zoai:ri.conicet.gov.ar:11336/265897instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:59.361CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population |
title |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population |
spellingShingle |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population Duarte, Damián GENOMIC SELECTION EFFECTIVENESS SEEDLING STAGE PREDICTED GENOMIC BREEDING VALUE OBSERVED BREEDING VALUE EUCALYPTUS |
title_short |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population |
title_full |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population |
title_fullStr |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population |
title_full_unstemmed |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population |
title_sort |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population |
dc.creator.none.fl_str_mv |
Duarte, Damián Jurcic, Esteban Javier Dutour, Joaquín Villalba, Pamela Victoria Centurión, Carmelo Grattapaglia, Dario Cappa, Eduardo Pablo |
author |
Duarte, Damián |
author_facet |
Duarte, Damián Jurcic, Esteban Javier Dutour, Joaquín Villalba, Pamela Victoria Centurión, Carmelo Grattapaglia, Dario Cappa, Eduardo Pablo |
author_role |
author |
author2 |
Jurcic, Esteban Javier Dutour, Joaquín Villalba, Pamela Victoria Centurión, Carmelo Grattapaglia, Dario Cappa, Eduardo Pablo |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
GENOMIC SELECTION EFFECTIVENESS SEEDLING STAGE PREDICTED GENOMIC BREEDING VALUE OBSERVED BREEDING VALUE EUCALYPTUS |
topic |
GENOMIC SELECTION EFFECTIVENESS SEEDLING STAGE PREDICTED GENOMIC BREEDING VALUE OBSERVED BREEDING VALUE EUCALYPTUS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.5 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi-generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance. Fil: Duarte, Damián. UPM Forestal Oriental S.A; Uruguay Fil: Jurcic, Esteban Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina Fil: Dutour, Joaquín. UPM Forestal Oriental S.A; Uruguay Fil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Centurión, Carmelo. UPM Forestal Oriental S.A; Uruguay Fil: Grattapaglia, Dario. Empresa Brasileira de Pesquisa Agropecuaria; Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina |
description |
Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi-generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265897 Duarte, Damián; Jurcic, Esteban Javier; Dutour, Joaquín; Villalba, Pamela Victoria; Centurión, Carmelo; et al.; Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population; Frontiers Media; Frontiers in Plant Science; 15; 10-2024; 1-16 1664-462X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265897 |
identifier_str_mv |
Duarte, Damián; Jurcic, Esteban Javier; Dutour, Joaquín; Villalba, Pamela Victoria; Centurión, Carmelo; et al.; Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population; Frontiers Media; Frontiers in Plant Science; 15; 10-2024; 1-16 1664-462X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fpls.2024.1462285/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fpls.2024.1462285 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980170469736448 |
score |
12.993085 |