Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population

Autores
Duarte, Damián; Jurcic, Esteban Javier; Dutour, Joaquín; Villalba, Pamela Victoria; Centurión, Carmelo; Grattapaglia, Dario; Cappa, Eduardo Pablo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi-generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.
Fil: Duarte, Damián. UPM Forestal Oriental S.A; Uruguay
Fil: Jurcic, Esteban Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Dutour, Joaquín. UPM Forestal Oriental S.A; Uruguay
Fil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Centurión, Carmelo. UPM Forestal Oriental S.A; Uruguay
Fil: Grattapaglia, Dario. Empresa Brasileira de Pesquisa Agropecuaria;
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Materia
GENOMIC SELECTION EFFECTIVENESS
SEEDLING STAGE
PREDICTED GENOMIC BREEDING VALUE
OBSERVED BREEDING VALUE
EUCALYPTUS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265897

id CONICETDig_53c4aaba4fc4e37e08131f2cd80fe0d1
oai_identifier_str oai:ri.conicet.gov.ar:11336/265897
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis populationDuarte, DamiánJurcic, Esteban JavierDutour, JoaquínVillalba, Pamela VictoriaCenturión, CarmeloGrattapaglia, DarioCappa, Eduardo PabloGENOMIC SELECTION EFFECTIVENESSSEEDLING STAGEPREDICTED GENOMIC BREEDING VALUEOBSERVED BREEDING VALUEEUCALYPTUShttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi-generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.Fil: Duarte, Damián. UPM Forestal Oriental S.A; UruguayFil: Jurcic, Esteban Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Dutour, Joaquín. UPM Forestal Oriental S.A; UruguayFil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Centurión, Carmelo. UPM Forestal Oriental S.A; UruguayFil: Grattapaglia, Dario. Empresa Brasileira de Pesquisa Agropecuaria;Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFrontiers Media2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265897Duarte, Damián; Jurcic, Esteban Javier; Dutour, Joaquín; Villalba, Pamela Victoria; Centurión, Carmelo; et al.; Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population; Frontiers Media; Frontiers in Plant Science; 15; 10-2024; 1-161664-462XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fpls.2024.1462285/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fpls.2024.1462285info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:58Zoai:ri.conicet.gov.ar:11336/265897instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:59.361CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population
title Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population
spellingShingle Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population
Duarte, Damián
GENOMIC SELECTION EFFECTIVENESS
SEEDLING STAGE
PREDICTED GENOMIC BREEDING VALUE
OBSERVED BREEDING VALUE
EUCALYPTUS
title_short Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population
title_full Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population
title_fullStr Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population
title_full_unstemmed Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population
title_sort Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population
dc.creator.none.fl_str_mv Duarte, Damián
Jurcic, Esteban Javier
Dutour, Joaquín
Villalba, Pamela Victoria
Centurión, Carmelo
Grattapaglia, Dario
Cappa, Eduardo Pablo
author Duarte, Damián
author_facet Duarte, Damián
Jurcic, Esteban Javier
Dutour, Joaquín
Villalba, Pamela Victoria
Centurión, Carmelo
Grattapaglia, Dario
Cappa, Eduardo Pablo
author_role author
author2 Jurcic, Esteban Javier
Dutour, Joaquín
Villalba, Pamela Victoria
Centurión, Carmelo
Grattapaglia, Dario
Cappa, Eduardo Pablo
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv GENOMIC SELECTION EFFECTIVENESS
SEEDLING STAGE
PREDICTED GENOMIC BREEDING VALUE
OBSERVED BREEDING VALUE
EUCALYPTUS
topic GENOMIC SELECTION EFFECTIVENESS
SEEDLING STAGE
PREDICTED GENOMIC BREEDING VALUE
OBSERVED BREEDING VALUE
EUCALYPTUS
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.5
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi-generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.
Fil: Duarte, Damián. UPM Forestal Oriental S.A; Uruguay
Fil: Jurcic, Esteban Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Dutour, Joaquín. UPM Forestal Oriental S.A; Uruguay
Fil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Centurión, Carmelo. UPM Forestal Oriental S.A; Uruguay
Fil: Grattapaglia, Dario. Empresa Brasileira de Pesquisa Agropecuaria;
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
description Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi-generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.
publishDate 2024
dc.date.none.fl_str_mv 2024-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265897
Duarte, Damián; Jurcic, Esteban Javier; Dutour, Joaquín; Villalba, Pamela Victoria; Centurión, Carmelo; et al.; Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population; Frontiers Media; Frontiers in Plant Science; 15; 10-2024; 1-16
1664-462X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265897
identifier_str_mv Duarte, Damián; Jurcic, Esteban Javier; Dutour, Joaquín; Villalba, Pamela Victoria; Centurión, Carmelo; et al.; Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population; Frontiers Media; Frontiers in Plant Science; 15; 10-2024; 1-16
1664-462X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fpls.2024.1462285/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fpls.2024.1462285
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980170469736448
score 12.993085