Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models
- Autores
- Turino, Ludmila Noelia; Cristaldi, Mariano Daniel; Mariano, Rodolfo Nicolás; Boimvaser, Sonia; Scandolo Lucini, Daniel Edgardo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Administration of exogenous progesterone is widely used in hormonal protocols for estrous (re)synchronization of dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to estimate the metabolic level of progesterone for each individual cow before administration. In the present contribution, progesterone pharmacokinetics has been determined in lactating Holstein cows with different milk production yields. A Bayesian approach has been implemented to build two probabilistic progesterone pharmacokinetic models for high and low yield dairy cows. Such models are based on a one-compartment Hill structure. Posterior probabilistic models have been structurally set up and parametric probability density functions have been empirically estimated. Moreover, a global sensitivity analysis has been done to know sensitivity profile of each model. Finally, posterior probabilistic models have adequately recognized cow’s progesterone metabolic level in a validation set when Kullback-Leibler based indices were used. These results suggest that milk yield may be a good index for estimating pharmacokinetic level of progesterone.
EEA Rafaela
Fil: Turino, Ludmila Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Instituto de Desarrollo y Diseño; Argentina
Fil: Mariano, Rodolfo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Boimvaser, Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Scandolo Lucini, Daniel Edgardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela; Argentina - Fuente
- Spanish Journal of Agricultural Research 12 (2) : 396-404 (2014)
- Materia
-
Vacas Lecheras
Razas (animales)
Progesterona
Análisis de Probabilidad
Métodos Estadísticos
Dairy Cows
Breeds (animals)
Progesterone
Probability Analysis
Statistical Methods
Raza Holstein - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/3921
Ver los metadatos del registro completo
id |
INTADig_a893eed16b55050e157ce7d7022abf51 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/3921 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic modelsTurino, Ludmila NoeliaCristaldi, Mariano DanielMariano, Rodolfo NicolásBoimvaser, SoniaScandolo Lucini, Daniel EdgardoVacas LecherasRazas (animales)ProgesteronaAnálisis de ProbabilidadMétodos EstadísticosDairy CowsBreeds (animals)ProgesteroneProbability AnalysisStatistical MethodsRaza HolsteinAdministration of exogenous progesterone is widely used in hormonal protocols for estrous (re)synchronization of dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to estimate the metabolic level of progesterone for each individual cow before administration. In the present contribution, progesterone pharmacokinetics has been determined in lactating Holstein cows with different milk production yields. A Bayesian approach has been implemented to build two probabilistic progesterone pharmacokinetic models for high and low yield dairy cows. Such models are based on a one-compartment Hill structure. Posterior probabilistic models have been structurally set up and parametric probability density functions have been empirically estimated. Moreover, a global sensitivity analysis has been done to know sensitivity profile of each model. Finally, posterior probabilistic models have adequately recognized cow’s progesterone metabolic level in a validation set when Kullback-Leibler based indices were used. These results suggest that milk yield may be a good index for estimating pharmacokinetic level of progesterone.EEA RafaelaFil: Turino, Ludmila Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Instituto de Desarrollo y Diseño; ArgentinaFil: Mariano, Rodolfo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Boimvaser, Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Scandolo Lucini, Daniel Edgardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela; ArgentinaInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)2018-11-16T15:16:39Z2018-11-16T15:16:39Z2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://revistas.inia.es/index.php/sjar/article/view/5271/2069http://hdl.handle.net/20.500.12123/39211695-971X2171-9292http://dx.doi.org/10.5424/sjar/2014122-5271Spanish Journal of Agricultural Research 12 (2) : 396-404 (2014)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:47:42Zoai:localhost:20.500.12123/3921instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:47:42.53INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
title |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
spellingShingle |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models Turino, Ludmila Noelia Vacas Lecheras Razas (animales) Progesterona Análisis de Probabilidad Métodos Estadísticos Dairy Cows Breeds (animals) Progesterone Probability Analysis Statistical Methods Raza Holstein |
title_short |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
title_full |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
title_fullStr |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
title_full_unstemmed |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
title_sort |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
dc.creator.none.fl_str_mv |
Turino, Ludmila Noelia Cristaldi, Mariano Daniel Mariano, Rodolfo Nicolás Boimvaser, Sonia Scandolo Lucini, Daniel Edgardo |
author |
Turino, Ludmila Noelia |
author_facet |
Turino, Ludmila Noelia Cristaldi, Mariano Daniel Mariano, Rodolfo Nicolás Boimvaser, Sonia Scandolo Lucini, Daniel Edgardo |
author_role |
author |
author2 |
Cristaldi, Mariano Daniel Mariano, Rodolfo Nicolás Boimvaser, Sonia Scandolo Lucini, Daniel Edgardo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Vacas Lecheras Razas (animales) Progesterona Análisis de Probabilidad Métodos Estadísticos Dairy Cows Breeds (animals) Progesterone Probability Analysis Statistical Methods Raza Holstein |
topic |
Vacas Lecheras Razas (animales) Progesterona Análisis de Probabilidad Métodos Estadísticos Dairy Cows Breeds (animals) Progesterone Probability Analysis Statistical Methods Raza Holstein |
dc.description.none.fl_txt_mv |
Administration of exogenous progesterone is widely used in hormonal protocols for estrous (re)synchronization of dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to estimate the metabolic level of progesterone for each individual cow before administration. In the present contribution, progesterone pharmacokinetics has been determined in lactating Holstein cows with different milk production yields. A Bayesian approach has been implemented to build two probabilistic progesterone pharmacokinetic models for high and low yield dairy cows. Such models are based on a one-compartment Hill structure. Posterior probabilistic models have been structurally set up and parametric probability density functions have been empirically estimated. Moreover, a global sensitivity analysis has been done to know sensitivity profile of each model. Finally, posterior probabilistic models have adequately recognized cow’s progesterone metabolic level in a validation set when Kullback-Leibler based indices were used. These results suggest that milk yield may be a good index for estimating pharmacokinetic level of progesterone. EEA Rafaela Fil: Turino, Ludmila Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Instituto de Desarrollo y Diseño; Argentina Fil: Mariano, Rodolfo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Boimvaser, Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Scandolo Lucini, Daniel Edgardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela; Argentina |
description |
Administration of exogenous progesterone is widely used in hormonal protocols for estrous (re)synchronization of dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to estimate the metabolic level of progesterone for each individual cow before administration. In the present contribution, progesterone pharmacokinetics has been determined in lactating Holstein cows with different milk production yields. A Bayesian approach has been implemented to build two probabilistic progesterone pharmacokinetic models for high and low yield dairy cows. Such models are based on a one-compartment Hill structure. Posterior probabilistic models have been structurally set up and parametric probability density functions have been empirically estimated. Moreover, a global sensitivity analysis has been done to know sensitivity profile of each model. Finally, posterior probabilistic models have adequately recognized cow’s progesterone metabolic level in a validation set when Kullback-Leibler based indices were used. These results suggest that milk yield may be a good index for estimating pharmacokinetic level of progesterone. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2018-11-16T15:16:39Z 2018-11-16T15:16:39Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://revistas.inia.es/index.php/sjar/article/view/5271/2069 http://hdl.handle.net/20.500.12123/3921 1695-971X 2171-9292 http://dx.doi.org/10.5424/sjar/2014122-5271 |
url |
http://revistas.inia.es/index.php/sjar/article/view/5271/2069 http://hdl.handle.net/20.500.12123/3921 http://dx.doi.org/10.5424/sjar/2014122-5271 |
identifier_str_mv |
1695-971X 2171-9292 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) |
publisher.none.fl_str_mv |
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) |
dc.source.none.fl_str_mv |
Spanish Journal of Agricultural Research 12 (2) : 396-404 (2014) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341360852533248 |
score |
12.623145 |