Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models
- Autores
- Turino, Ludmila Noelia; Cristaldi, Mariano Daniel; Mariano, Rodolfo Nicolás; Boimvaser, Sonia; Scandolo, D. E.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Administration of exogenous progesterone is widely used in hormonal protocols for estrous (re)synchronization of dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to estimate the metabolic level of progesterone for each individual cow before administration. In the present contribution, progesterone pharmacokinetics has been determined in lactating Holstein cows with different milk production yields. A Bayesian approach has been implemented to build two probabilistic progesterone pharmacokinetic models for high and low yield dairy cows. Such models are based on a one-compartment Hill structure. Posterior probabilistic models have been structurally set up and parametric probability density functions have been empirically estimated. Moreover, a global sensitivity analysis has been done to know sensitivity profile of each model. Finally, posterior probabilistic models have adequately recognized cow´s progesterone metabolic level in a validation set when Kullback-Leibler based indices were used. These results suggest that milk yield may be a good index for estimating pharmacokinetic level of progesterone.
Fil: Turino, Ludmila Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mariano, Rodolfo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Boimvaser, Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Scandolo, D. E.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; Argentina - Materia
-
BAYESIAN MODELING
HILL EQUATION
METABOLISM
MILK YIELD
PROGESTERONE PHARMACOKINETIC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22764
Ver los metadatos del registro completo
id |
CONICETDig_74d9ccd24d5f4a5d543508ec0c1aed0b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22764 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic modelsTurino, Ludmila NoeliaCristaldi, Mariano DanielMariano, Rodolfo NicolásBoimvaser, SoniaScandolo, D. E.BAYESIAN MODELINGHILL EQUATIONMETABOLISMMILK YIELDPROGESTERONE PHARMACOKINETICAdministration of exogenous progesterone is widely used in hormonal protocols for estrous (re)synchronization of dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to estimate the metabolic level of progesterone for each individual cow before administration. In the present contribution, progesterone pharmacokinetics has been determined in lactating Holstein cows with different milk production yields. A Bayesian approach has been implemented to build two probabilistic progesterone pharmacokinetic models for high and low yield dairy cows. Such models are based on a one-compartment Hill structure. Posterior probabilistic models have been structurally set up and parametric probability density functions have been empirically estimated. Moreover, a global sensitivity analysis has been done to know sensitivity profile of each model. Finally, posterior probabilistic models have adequately recognized cow´s progesterone metabolic level in a validation set when Kullback-Leibler based indices were used. These results suggest that milk yield may be a good index for estimating pharmacokinetic level of progesterone.Fil: Turino, Ludmila Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mariano, Rodolfo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Boimvaser, Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Scandolo, D. E.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; ArgentinaSpanish National Institute for Agriculture and Food Research and Technology2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22764Turino, Ludmila Noelia; Cristaldi, Mariano Daniel; Mariano, Rodolfo Nicolás; Boimvaser, Sonia; Scandolo, D. E.; Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models; Spanish National Institute for Agriculture and Food Research and Technology; Spanish Journal Of Agricultural Research; 12; 2; 5-2014; 396-4041695-971XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5424/sjar/2014122-5271info:eu-repo/semantics/altIdentifier/url/http://revistas.inia.es/index.php/sjar/article/view/5271info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:27Zoai:ri.conicet.gov.ar:11336/22764instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:27.667CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
title |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
spellingShingle |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models Turino, Ludmila Noelia BAYESIAN MODELING HILL EQUATION METABOLISM MILK YIELD PROGESTERONE PHARMACOKINETIC |
title_short |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
title_full |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
title_fullStr |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
title_full_unstemmed |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
title_sort |
Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models |
dc.creator.none.fl_str_mv |
Turino, Ludmila Noelia Cristaldi, Mariano Daniel Mariano, Rodolfo Nicolás Boimvaser, Sonia Scandolo, D. E. |
author |
Turino, Ludmila Noelia |
author_facet |
Turino, Ludmila Noelia Cristaldi, Mariano Daniel Mariano, Rodolfo Nicolás Boimvaser, Sonia Scandolo, D. E. |
author_role |
author |
author2 |
Cristaldi, Mariano Daniel Mariano, Rodolfo Nicolás Boimvaser, Sonia Scandolo, D. E. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BAYESIAN MODELING HILL EQUATION METABOLISM MILK YIELD PROGESTERONE PHARMACOKINETIC |
topic |
BAYESIAN MODELING HILL EQUATION METABOLISM MILK YIELD PROGESTERONE PHARMACOKINETIC |
dc.description.none.fl_txt_mv |
Administration of exogenous progesterone is widely used in hormonal protocols for estrous (re)synchronization of dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to estimate the metabolic level of progesterone for each individual cow before administration. In the present contribution, progesterone pharmacokinetics has been determined in lactating Holstein cows with different milk production yields. A Bayesian approach has been implemented to build two probabilistic progesterone pharmacokinetic models for high and low yield dairy cows. Such models are based on a one-compartment Hill structure. Posterior probabilistic models have been structurally set up and parametric probability density functions have been empirically estimated. Moreover, a global sensitivity analysis has been done to know sensitivity profile of each model. Finally, posterior probabilistic models have adequately recognized cow´s progesterone metabolic level in a validation set when Kullback-Leibler based indices were used. These results suggest that milk yield may be a good index for estimating pharmacokinetic level of progesterone. Fil: Turino, Ludmila Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Mariano, Rodolfo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Boimvaser, Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Scandolo, D. E.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; Argentina |
description |
Administration of exogenous progesterone is widely used in hormonal protocols for estrous (re)synchronization of dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to estimate the metabolic level of progesterone for each individual cow before administration. In the present contribution, progesterone pharmacokinetics has been determined in lactating Holstein cows with different milk production yields. A Bayesian approach has been implemented to build two probabilistic progesterone pharmacokinetic models for high and low yield dairy cows. Such models are based on a one-compartment Hill structure. Posterior probabilistic models have been structurally set up and parametric probability density functions have been empirically estimated. Moreover, a global sensitivity analysis has been done to know sensitivity profile of each model. Finally, posterior probabilistic models have adequately recognized cow´s progesterone metabolic level in a validation set when Kullback-Leibler based indices were used. These results suggest that milk yield may be a good index for estimating pharmacokinetic level of progesterone. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22764 Turino, Ludmila Noelia; Cristaldi, Mariano Daniel; Mariano, Rodolfo Nicolás; Boimvaser, Sonia; Scandolo, D. E.; Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models; Spanish National Institute for Agriculture and Food Research and Technology; Spanish Journal Of Agricultural Research; 12; 2; 5-2014; 396-404 1695-971X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22764 |
identifier_str_mv |
Turino, Ludmila Noelia; Cristaldi, Mariano Daniel; Mariano, Rodolfo Nicolás; Boimvaser, Sonia; Scandolo, D. E.; Metabolic level recognition of progesterone in dairy Holstein cows using probabilistic models; Spanish National Institute for Agriculture and Food Research and Technology; Spanish Journal Of Agricultural Research; 12; 2; 5-2014; 396-404 1695-971X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5424/sjar/2014122-5271 info:eu-repo/semantics/altIdentifier/url/http://revistas.inia.es/index.php/sjar/article/view/5271 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Spanish National Institute for Agriculture and Food Research and Technology |
publisher.none.fl_str_mv |
Spanish National Institute for Agriculture and Food Research and Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269520989782016 |
score |
13.13397 |