Dissecting light sensing and metabolic pathways on the millimeter scale in high-altitude modern stromatolites

Autores
Alonso-Reyes, Daniel Gonzalo; Galván, Fátima Silvina; Irazoqui, Jose Matias; Amadio, Ariel; Tschoeke, Diogo; Thompson, Fabiano; Albarracín, Virginia Helena; Farias, María Eugenia
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Modern non-lithifying stromatolites on the shore of the volcanic lake Socompa (SST) in the Puna are affected by several extreme conditions. The present study assesses for the first time light utilization and functional metabolic stratification of SST on a millimeter scale through shotgun metagenomics. In addition, a scanning-electron-microscopy approach was used to explore the community. The analysis on SST unveiled the profile of a photosynthetic mat, with cyanobacteria not directly exposed to light, but placed just below a high-UV-resistant community. Calvin–Benson and 3-hydroxypropinate cycles for carbon fixation were abundant in upper, oxic layers, while the Wood–Ljungdahl pathway was dominant in the deeper anoxic strata. The high abundance of genes for UV-screening and oxidant-quenching pigments and CPF (photoreactivation) in the UV-stressed layers could indicate that the zone itself works as a UV shield. There is a remarkable density of sequences associated with photoreceptors in the first two layers. Also, genetic evidence of photosynthesis split in eukaryotic (layer 1) and prokaryotic (layer 2). Photoheterotrophic bacteria, aerobic photoautotrophic bacteria, and anaerobic photoautotrophic bacteria coexist by selectively absorbing different parts of the light spectrum (blue, red, and IR respectively) at different positions of the mat. Genes for oxygen, nitrogen, and sulfur metabolism account for the microelectrode chemical data and pigment measurements performed in previous publications. We also provide here an explanation for the vertical microbial mobility within the SST described previously. Finally, our study points to SST as ideal modern analogues of ancient ST.
EEA Rafaela
Fil: Alonso-Reyes, Daniel Gonzalo. Universidad Nacional de Tucumán. Centro Integral de Microscopía Electrónica (CIME). Laboratorio de Microbiología Ultraestructural y Molecular; Argentina
Fil: Alonso-Reyes, Daniel Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Integral de Microscopía Electrónica (CIME). Laboratorio de Microbiología Ultraestructural y Molecular; Argentina
Fil: Alonso-Reyes, Daniel Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI). Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas; Argentina
Fil: Galván, Fátima Silvina. Universidad Nacional de Tucumán. Centro Integral de Microscopía Electrónica. Laboratorio de Microbiología Ultraestructural y Molecular; Argentina
Fil: Galván, Fátima Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Integral de Microscopía Electrónica. Laboratorio de Microbiología Ultraestructural y Molecular; Argentina
Fil: Irazoqui, Jose Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación de la Cadena Láctea; Argentina
Fil: Irazoqui, Jose Matias. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela. Instituto de Investigación de la Cadena Láctea; Argentina
Fil: Amadio, Ariel​. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela. Instituto de Investigación de la Cadena Láctea; Argentina
Fil: Amadio, Ariel​. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación de la Cadena Láctea; Argentina
Fil: Diogo Tschoeke. Federal University of Rio de Janeiro. Institute of Biology and Coppe; Brasil
Fil: Fabiano Thompson. Federal University of Rio de Janeiro. Institute of Biology and Coppe; Brasil
Fil: Albarracín, Virginia Helena. Universidad Nacional de Tucumán. Centro Integral de Microscopía Electrónica (CIME). Laboratorio de Microbiología Ultraestructural y Molecular; Argentina
Fil: Albarracín, Virginia Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Integral de Microscopía Electrónica (CIME). Laboratorio de Microbiología Ultraestructural y Molecular; Argentina
Fil: Albarracín, Virginia Helena. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina
Fil: Farias, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI). Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas; Argentina
Fuente
Microbial Ecology (Published: 26 September 2022)
Materia
Stromatolites
Microbiomes
Ultraviolet Radiation
Estromatolitos
Microbiomas
Radiación Ultravioleta
Metagenomics
Metagenómica
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/13899

id INTADig_982428c1d734d478dfb6d591d432cb70
oai_identifier_str oai:localhost:20.500.12123/13899
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Dissecting light sensing and metabolic pathways on the millimeter scale in high-altitude modern stromatolitesAlonso-Reyes, Daniel GonzaloGalván, Fátima SilvinaIrazoqui, Jose MatiasAmadio, ArielTschoeke, DiogoThompson, FabianoAlbarracín, Virginia HelenaFarias, María EugeniaStromatolitesMicrobiomesUltraviolet RadiationEstromatolitosMicrobiomasRadiación UltravioletaMetagenomicsMetagenómicaModern non-lithifying stromatolites on the shore of the volcanic lake Socompa (SST) in the Puna are affected by several extreme conditions. The present study assesses for the first time light utilization and functional metabolic stratification of SST on a millimeter scale through shotgun metagenomics. In addition, a scanning-electron-microscopy approach was used to explore the community. The analysis on SST unveiled the profile of a photosynthetic mat, with cyanobacteria not directly exposed to light, but placed just below a high-UV-resistant community. Calvin–Benson and 3-hydroxypropinate cycles for carbon fixation were abundant in upper, oxic layers, while the Wood–Ljungdahl pathway was dominant in the deeper anoxic strata. The high abundance of genes for UV-screening and oxidant-quenching pigments and CPF (photoreactivation) in the UV-stressed layers could indicate that the zone itself works as a UV shield. There is a remarkable density of sequences associated with photoreceptors in the first two layers. Also, genetic evidence of photosynthesis split in eukaryotic (layer 1) and prokaryotic (layer 2). Photoheterotrophic bacteria, aerobic photoautotrophic bacteria, and anaerobic photoautotrophic bacteria coexist by selectively absorbing different parts of the light spectrum (blue, red, and IR respectively) at different positions of the mat. Genes for oxygen, nitrogen, and sulfur metabolism account for the microelectrode chemical data and pigment measurements performed in previous publications. We also provide here an explanation for the vertical microbial mobility within the SST described previously. Finally, our study points to SST as ideal modern analogues of ancient ST.EEA RafaelaFil: Alonso-Reyes, Daniel Gonzalo. Universidad Nacional de Tucumán. Centro Integral de Microscopía Electrónica (CIME). Laboratorio de Microbiología Ultraestructural y Molecular; ArgentinaFil: Alonso-Reyes, Daniel Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Integral de Microscopía Electrónica (CIME). Laboratorio de Microbiología Ultraestructural y Molecular; ArgentinaFil: Alonso-Reyes, Daniel Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI). Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas; ArgentinaFil: Galván, Fátima Silvina. Universidad Nacional de Tucumán. Centro Integral de Microscopía Electrónica. Laboratorio de Microbiología Ultraestructural y Molecular; ArgentinaFil: Galván, Fátima Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Integral de Microscopía Electrónica. Laboratorio de Microbiología Ultraestructural y Molecular; ArgentinaFil: Irazoqui, Jose Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación de la Cadena Láctea; ArgentinaFil: Irazoqui, Jose Matias. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela. Instituto de Investigación de la Cadena Láctea; ArgentinaFil: Amadio, Ariel​. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela. Instituto de Investigación de la Cadena Láctea; ArgentinaFil: Amadio, Ariel​. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación de la Cadena Láctea; ArgentinaFil: Diogo Tschoeke. Federal University of Rio de Janeiro. Institute of Biology and Coppe; BrasilFil: Fabiano Thompson. Federal University of Rio de Janeiro. Institute of Biology and Coppe; BrasilFil: Albarracín, Virginia Helena. Universidad Nacional de Tucumán. Centro Integral de Microscopía Electrónica (CIME). Laboratorio de Microbiología Ultraestructural y Molecular; ArgentinaFil: Albarracín, Virginia Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Integral de Microscopía Electrónica (CIME). Laboratorio de Microbiología Ultraestructural y Molecular; ArgentinaFil: Albarracín, Virginia Helena. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Farias, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI). Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas; ArgentinaSpringer2023-01-12T16:12:33Z2023-01-12T16:12:33Z2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/13899https://link.springer.com/article/10.1007/s00248-022-02112-7Alonso-Reyes, D.G., Galván, F., Irazoqui, J.M. et al. Dissecting Light Sensing and Metabolic Pathways on the Millimeter Scale in High-Altitude Modern Stromatolites. Microb Ecol (2022). https://doi.org/10.1007/s00248-022-02112-70095-3628https://doi.org/10.1007/s00248-022-02112-7Microbial Ecology (Published: 26 September 2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-18T10:08:52Zoai:localhost:20.500.12123/13899instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-18 10:08:53.306INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Dissecting light sensing and metabolic pathways on the millimeter scale in high-altitude modern stromatolites
title Dissecting light sensing and metabolic pathways on the millimeter scale in high-altitude modern stromatolites
spellingShingle Dissecting light sensing and metabolic pathways on the millimeter scale in high-altitude modern stromatolites
Alonso-Reyes, Daniel Gonzalo
Stromatolites
Microbiomes
Ultraviolet Radiation
Estromatolitos
Microbiomas
Radiación Ultravioleta
Metagenomics
Metagenómica
title_short Dissecting light sensing and metabolic pathways on the millimeter scale in high-altitude modern stromatolites
title_full Dissecting light sensing and metabolic pathways on the millimeter scale in high-altitude modern stromatolites
title_fullStr Dissecting light sensing and metabolic pathways on the millimeter scale in high-altitude modern stromatolites
title_full_unstemmed Dissecting light sensing and metabolic pathways on the millimeter scale in high-altitude modern stromatolites
title_sort Dissecting light sensing and metabolic pathways on the millimeter scale in high-altitude modern stromatolites
dc.creator.none.fl_str_mv Alonso-Reyes, Daniel Gonzalo
Galván, Fátima Silvina
Irazoqui, Jose Matias
Amadio, Ariel
Tschoeke, Diogo
Thompson, Fabiano
Albarracín, Virginia Helena
Farias, María Eugenia
author Alonso-Reyes, Daniel Gonzalo
author_facet Alonso-Reyes, Daniel Gonzalo
Galván, Fátima Silvina
Irazoqui, Jose Matias
Amadio, Ariel
Tschoeke, Diogo
Thompson, Fabiano
Albarracín, Virginia Helena
Farias, María Eugenia
author_role author
author2 Galván, Fátima Silvina
Irazoqui, Jose Matias
Amadio, Ariel
Tschoeke, Diogo
Thompson, Fabiano
Albarracín, Virginia Helena
Farias, María Eugenia
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Stromatolites
Microbiomes
Ultraviolet Radiation
Estromatolitos
Microbiomas
Radiación Ultravioleta
Metagenomics
Metagenómica
topic Stromatolites
Microbiomes
Ultraviolet Radiation
Estromatolitos
Microbiomas
Radiación Ultravioleta
Metagenomics
Metagenómica
dc.description.none.fl_txt_mv Modern non-lithifying stromatolites on the shore of the volcanic lake Socompa (SST) in the Puna are affected by several extreme conditions. The present study assesses for the first time light utilization and functional metabolic stratification of SST on a millimeter scale through shotgun metagenomics. In addition, a scanning-electron-microscopy approach was used to explore the community. The analysis on SST unveiled the profile of a photosynthetic mat, with cyanobacteria not directly exposed to light, but placed just below a high-UV-resistant community. Calvin–Benson and 3-hydroxypropinate cycles for carbon fixation were abundant in upper, oxic layers, while the Wood–Ljungdahl pathway was dominant in the deeper anoxic strata. The high abundance of genes for UV-screening and oxidant-quenching pigments and CPF (photoreactivation) in the UV-stressed layers could indicate that the zone itself works as a UV shield. There is a remarkable density of sequences associated with photoreceptors in the first two layers. Also, genetic evidence of photosynthesis split in eukaryotic (layer 1) and prokaryotic (layer 2). Photoheterotrophic bacteria, aerobic photoautotrophic bacteria, and anaerobic photoautotrophic bacteria coexist by selectively absorbing different parts of the light spectrum (blue, red, and IR respectively) at different positions of the mat. Genes for oxygen, nitrogen, and sulfur metabolism account for the microelectrode chemical data and pigment measurements performed in previous publications. We also provide here an explanation for the vertical microbial mobility within the SST described previously. Finally, our study points to SST as ideal modern analogues of ancient ST.
EEA Rafaela
Fil: Alonso-Reyes, Daniel Gonzalo. Universidad Nacional de Tucumán. Centro Integral de Microscopía Electrónica (CIME). Laboratorio de Microbiología Ultraestructural y Molecular; Argentina
Fil: Alonso-Reyes, Daniel Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Integral de Microscopía Electrónica (CIME). Laboratorio de Microbiología Ultraestructural y Molecular; Argentina
Fil: Alonso-Reyes, Daniel Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI). Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas; Argentina
Fil: Galván, Fátima Silvina. Universidad Nacional de Tucumán. Centro Integral de Microscopía Electrónica. Laboratorio de Microbiología Ultraestructural y Molecular; Argentina
Fil: Galván, Fátima Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Integral de Microscopía Electrónica. Laboratorio de Microbiología Ultraestructural y Molecular; Argentina
Fil: Irazoqui, Jose Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación de la Cadena Láctea; Argentina
Fil: Irazoqui, Jose Matias. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela. Instituto de Investigación de la Cadena Láctea; Argentina
Fil: Amadio, Ariel​. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela. Instituto de Investigación de la Cadena Láctea; Argentina
Fil: Amadio, Ariel​. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación de la Cadena Láctea; Argentina
Fil: Diogo Tschoeke. Federal University of Rio de Janeiro. Institute of Biology and Coppe; Brasil
Fil: Fabiano Thompson. Federal University of Rio de Janeiro. Institute of Biology and Coppe; Brasil
Fil: Albarracín, Virginia Helena. Universidad Nacional de Tucumán. Centro Integral de Microscopía Electrónica (CIME). Laboratorio de Microbiología Ultraestructural y Molecular; Argentina
Fil: Albarracín, Virginia Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Integral de Microscopía Electrónica (CIME). Laboratorio de Microbiología Ultraestructural y Molecular; Argentina
Fil: Albarracín, Virginia Helena. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina
Fil: Farias, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI). Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas; Argentina
description Modern non-lithifying stromatolites on the shore of the volcanic lake Socompa (SST) in the Puna are affected by several extreme conditions. The present study assesses for the first time light utilization and functional metabolic stratification of SST on a millimeter scale through shotgun metagenomics. In addition, a scanning-electron-microscopy approach was used to explore the community. The analysis on SST unveiled the profile of a photosynthetic mat, with cyanobacteria not directly exposed to light, but placed just below a high-UV-resistant community. Calvin–Benson and 3-hydroxypropinate cycles for carbon fixation were abundant in upper, oxic layers, while the Wood–Ljungdahl pathway was dominant in the deeper anoxic strata. The high abundance of genes for UV-screening and oxidant-quenching pigments and CPF (photoreactivation) in the UV-stressed layers could indicate that the zone itself works as a UV shield. There is a remarkable density of sequences associated with photoreceptors in the first two layers. Also, genetic evidence of photosynthesis split in eukaryotic (layer 1) and prokaryotic (layer 2). Photoheterotrophic bacteria, aerobic photoautotrophic bacteria, and anaerobic photoautotrophic bacteria coexist by selectively absorbing different parts of the light spectrum (blue, red, and IR respectively) at different positions of the mat. Genes for oxygen, nitrogen, and sulfur metabolism account for the microelectrode chemical data and pigment measurements performed in previous publications. We also provide here an explanation for the vertical microbial mobility within the SST described previously. Finally, our study points to SST as ideal modern analogues of ancient ST.
publishDate 2022
dc.date.none.fl_str_mv 2022-10
2023-01-12T16:12:33Z
2023-01-12T16:12:33Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/13899
https://link.springer.com/article/10.1007/s00248-022-02112-7
Alonso-Reyes, D.G., Galván, F., Irazoqui, J.M. et al. Dissecting Light Sensing and Metabolic Pathways on the Millimeter Scale in High-Altitude Modern Stromatolites. Microb Ecol (2022). https://doi.org/10.1007/s00248-022-02112-7
0095-3628
https://doi.org/10.1007/s00248-022-02112-7
url http://hdl.handle.net/20.500.12123/13899
https://link.springer.com/article/10.1007/s00248-022-02112-7
https://doi.org/10.1007/s00248-022-02112-7
identifier_str_mv Alonso-Reyes, D.G., Galván, F., Irazoqui, J.M. et al. Dissecting Light Sensing and Metabolic Pathways on the Millimeter Scale in High-Altitude Modern Stromatolites. Microb Ecol (2022). https://doi.org/10.1007/s00248-022-02112-7
0095-3628
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Microbial Ecology (Published: 26 September 2022)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1843609217741619200
score 13.001348