Identification of peach accessions stability and adaptability in non-balanced trials through years
- Autores
- Maulion, Evangelina; Arroyo, Luis Enrique; Daorden, Maria Elena; Valentini, Gabriel Hugo; Cervigni, Gerardo Domingo Lucio
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- Identification of genotypes with acceptable yield and yield stability in different environments is an important issue in plant breeding. Genotype-by-environment interaction (GEI) can alter genotypes performances making the selection of superior material a tedious task for breeders. Consequently, it is necessary to assess the usefulness of different available methods and identify the most suitable for understanding GEI. The objectives of this work were to compare three methods to study genotype stability considering incomplete data sets: (i) Di Rienzo, Guzmán and Casanoves’ test (DGC), (ii) relative yield (RY) and (iii) Piepho’s method. In addition, AMMI (additive main effect and multiplicative interaction) analysis and eight AMMI stability measures SIPC, EV, ASV, Da, FP, B, FA and Za were computed to explore their advantages and disadvantages to select stable entries. The usefulness of the genotype selection index (GSI) and the rank-sum (RS) procedures to identify stable and high-yielding genotypes were evaluated and then compared with the superiority (P) and reliability indexes (I).The association between yield variation and climatic factors as frosts, chilling, heat, rainfall and the interactions among them were also analyzed. 29 peach entries were assessed in four to seven seasons in a completely randomized design with three replications. DGC and RY tests agreed on classifying Fireprince as a stable and high-yielding peach, RY classified 25 entries as stable, while Piepho’s method did not separate the tested genotypes as DGC and RY did. The results of AMMI indicated that 25.06% of total variability was justified by genotypes, 9.76% by environments and 58.97% by GEI. The first five interaction principal components could explain 94.82% of GEI and showed the efficiency of AMMI model to study and understand GEI. The AMMI parameters showed no association with fruit yield, therefore, they could be useful to indicate stable entries but they would not be appropriate to select stable and high-yielding genotypes. The EV and Za indicated static stability while ASV, SIPC, Da, FA and FP pointed out the dynamic stability concept. The performance of the best entries selected by GSI, RS, P and I procedures were not different, therefore, any of them can be used to select superior peach genotypes. Rainfall during endodormancy, rainfall from floral bud endo- to ecodormancy - and heat accumulation during fruit development period showed significant correlation with yield variation across seasons.
http://www.sciencedirect.com/science/article/pii/S0304423815303733?via%3Dihub
EEA San Pedro
Fil: Maulión, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
Fil: Arroyo, Luis Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina
Fil: Daorden, Maria Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina
Fil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina
Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina - Fuente
- Scientia horticulturae 199 : 198-208. (February 2016)
- Materia
-
Durazno
Genotipos
Interacción Genotipo Ambiente
Peaches
Genotypes
Genotype Environment Interaction - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/1143
Ver los metadatos del registro completo
id |
INTADig_972914c4087a3250330de0a7e445debd |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/1143 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Identification of peach accessions stability and adaptability in non-balanced trials through yearsMaulion, EvangelinaArroyo, Luis EnriqueDaorden, Maria ElenaValentini, Gabriel HugoCervigni, Gerardo Domingo LucioDuraznoGenotiposInteracción Genotipo AmbientePeachesGenotypesGenotype Environment InteractionIdentification of genotypes with acceptable yield and yield stability in different environments is an important issue in plant breeding. Genotype-by-environment interaction (GEI) can alter genotypes performances making the selection of superior material a tedious task for breeders. Consequently, it is necessary to assess the usefulness of different available methods and identify the most suitable for understanding GEI. The objectives of this work were to compare three methods to study genotype stability considering incomplete data sets: (i) Di Rienzo, Guzmán and Casanoves’ test (DGC), (ii) relative yield (RY) and (iii) Piepho’s method. In addition, AMMI (additive main effect and multiplicative interaction) analysis and eight AMMI stability measures SIPC, EV, ASV, Da, FP, B, FA and Za were computed to explore their advantages and disadvantages to select stable entries. The usefulness of the genotype selection index (GSI) and the rank-sum (RS) procedures to identify stable and high-yielding genotypes were evaluated and then compared with the superiority (P) and reliability indexes (I).The association between yield variation and climatic factors as frosts, chilling, heat, rainfall and the interactions among them were also analyzed. 29 peach entries were assessed in four to seven seasons in a completely randomized design with three replications. DGC and RY tests agreed on classifying Fireprince as a stable and high-yielding peach, RY classified 25 entries as stable, while Piepho’s method did not separate the tested genotypes as DGC and RY did. The results of AMMI indicated that 25.06% of total variability was justified by genotypes, 9.76% by environments and 58.97% by GEI. The first five interaction principal components could explain 94.82% of GEI and showed the efficiency of AMMI model to study and understand GEI. The AMMI parameters showed no association with fruit yield, therefore, they could be useful to indicate stable entries but they would not be appropriate to select stable and high-yielding genotypes. The EV and Za indicated static stability while ASV, SIPC, Da, FA and FP pointed out the dynamic stability concept. The performance of the best entries selected by GSI, RS, P and I procedures were not different, therefore, any of them can be used to select superior peach genotypes. Rainfall during endodormancy, rainfall from floral bud endo- to ecodormancy - and heat accumulation during fruit development period showed significant correlation with yield variation across seasons.http://www.sciencedirect.com/science/article/pii/S0304423815303733?via%3DihubEEA San PedroFil: Maulión, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Arroyo, Luis Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Daorden, Maria Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina2017-09-06T13:00:33Z2017-09-06T13:00:33Z2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/1143http://www.sciencedirect.com/science/article/pii/S0304423815303733?via%3Dihub0304-4238https://doi.org/10.1016/j.scienta.2015.12.048Scientia horticulturae 199 : 198-208. (February 2016)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-18T10:06:58Zoai:localhost:20.500.12123/1143instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-18 10:06:58.6INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Identification of peach accessions stability and adaptability in non-balanced trials through years |
title |
Identification of peach accessions stability and adaptability in non-balanced trials through years |
spellingShingle |
Identification of peach accessions stability and adaptability in non-balanced trials through years Maulion, Evangelina Durazno Genotipos Interacción Genotipo Ambiente Peaches Genotypes Genotype Environment Interaction |
title_short |
Identification of peach accessions stability and adaptability in non-balanced trials through years |
title_full |
Identification of peach accessions stability and adaptability in non-balanced trials through years |
title_fullStr |
Identification of peach accessions stability and adaptability in non-balanced trials through years |
title_full_unstemmed |
Identification of peach accessions stability and adaptability in non-balanced trials through years |
title_sort |
Identification of peach accessions stability and adaptability in non-balanced trials through years |
dc.creator.none.fl_str_mv |
Maulion, Evangelina Arroyo, Luis Enrique Daorden, Maria Elena Valentini, Gabriel Hugo Cervigni, Gerardo Domingo Lucio |
author |
Maulion, Evangelina |
author_facet |
Maulion, Evangelina Arroyo, Luis Enrique Daorden, Maria Elena Valentini, Gabriel Hugo Cervigni, Gerardo Domingo Lucio |
author_role |
author |
author2 |
Arroyo, Luis Enrique Daorden, Maria Elena Valentini, Gabriel Hugo Cervigni, Gerardo Domingo Lucio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Durazno Genotipos Interacción Genotipo Ambiente Peaches Genotypes Genotype Environment Interaction |
topic |
Durazno Genotipos Interacción Genotipo Ambiente Peaches Genotypes Genotype Environment Interaction |
dc.description.none.fl_txt_mv |
Identification of genotypes with acceptable yield and yield stability in different environments is an important issue in plant breeding. Genotype-by-environment interaction (GEI) can alter genotypes performances making the selection of superior material a tedious task for breeders. Consequently, it is necessary to assess the usefulness of different available methods and identify the most suitable for understanding GEI. The objectives of this work were to compare three methods to study genotype stability considering incomplete data sets: (i) Di Rienzo, Guzmán and Casanoves’ test (DGC), (ii) relative yield (RY) and (iii) Piepho’s method. In addition, AMMI (additive main effect and multiplicative interaction) analysis and eight AMMI stability measures SIPC, EV, ASV, Da, FP, B, FA and Za were computed to explore their advantages and disadvantages to select stable entries. The usefulness of the genotype selection index (GSI) and the rank-sum (RS) procedures to identify stable and high-yielding genotypes were evaluated and then compared with the superiority (P) and reliability indexes (I).The association between yield variation and climatic factors as frosts, chilling, heat, rainfall and the interactions among them were also analyzed. 29 peach entries were assessed in four to seven seasons in a completely randomized design with three replications. DGC and RY tests agreed on classifying Fireprince as a stable and high-yielding peach, RY classified 25 entries as stable, while Piepho’s method did not separate the tested genotypes as DGC and RY did. The results of AMMI indicated that 25.06% of total variability was justified by genotypes, 9.76% by environments and 58.97% by GEI. The first five interaction principal components could explain 94.82% of GEI and showed the efficiency of AMMI model to study and understand GEI. The AMMI parameters showed no association with fruit yield, therefore, they could be useful to indicate stable entries but they would not be appropriate to select stable and high-yielding genotypes. The EV and Za indicated static stability while ASV, SIPC, Da, FA and FP pointed out the dynamic stability concept. The performance of the best entries selected by GSI, RS, P and I procedures were not different, therefore, any of them can be used to select superior peach genotypes. Rainfall during endodormancy, rainfall from floral bud endo- to ecodormancy - and heat accumulation during fruit development period showed significant correlation with yield variation across seasons. http://www.sciencedirect.com/science/article/pii/S0304423815303733?via%3Dihub EEA San Pedro Fil: Maulión, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina Fil: Arroyo, Luis Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Daorden, Maria Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina |
description |
Identification of genotypes with acceptable yield and yield stability in different environments is an important issue in plant breeding. Genotype-by-environment interaction (GEI) can alter genotypes performances making the selection of superior material a tedious task for breeders. Consequently, it is necessary to assess the usefulness of different available methods and identify the most suitable for understanding GEI. The objectives of this work were to compare three methods to study genotype stability considering incomplete data sets: (i) Di Rienzo, Guzmán and Casanoves’ test (DGC), (ii) relative yield (RY) and (iii) Piepho’s method. In addition, AMMI (additive main effect and multiplicative interaction) analysis and eight AMMI stability measures SIPC, EV, ASV, Da, FP, B, FA and Za were computed to explore their advantages and disadvantages to select stable entries. The usefulness of the genotype selection index (GSI) and the rank-sum (RS) procedures to identify stable and high-yielding genotypes were evaluated and then compared with the superiority (P) and reliability indexes (I).The association between yield variation and climatic factors as frosts, chilling, heat, rainfall and the interactions among them were also analyzed. 29 peach entries were assessed in four to seven seasons in a completely randomized design with three replications. DGC and RY tests agreed on classifying Fireprince as a stable and high-yielding peach, RY classified 25 entries as stable, while Piepho’s method did not separate the tested genotypes as DGC and RY did. The results of AMMI indicated that 25.06% of total variability was justified by genotypes, 9.76% by environments and 58.97% by GEI. The first five interaction principal components could explain 94.82% of GEI and showed the efficiency of AMMI model to study and understand GEI. The AMMI parameters showed no association with fruit yield, therefore, they could be useful to indicate stable entries but they would not be appropriate to select stable and high-yielding genotypes. The EV and Za indicated static stability while ASV, SIPC, Da, FA and FP pointed out the dynamic stability concept. The performance of the best entries selected by GSI, RS, P and I procedures were not different, therefore, any of them can be used to select superior peach genotypes. Rainfall during endodormancy, rainfall from floral bud endo- to ecodormancy - and heat accumulation during fruit development period showed significant correlation with yield variation across seasons. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2017-09-06T13:00:33Z 2017-09-06T13:00:33Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/1143 http://www.sciencedirect.com/science/article/pii/S0304423815303733?via%3Dihub 0304-4238 https://doi.org/10.1016/j.scienta.2015.12.048 |
url |
http://hdl.handle.net/20.500.12123/1143 http://www.sciencedirect.com/science/article/pii/S0304423815303733?via%3Dihub https://doi.org/10.1016/j.scienta.2015.12.048 |
identifier_str_mv |
0304-4238 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Scientia horticulturae 199 : 198-208. (February 2016) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1843609161312501760 |
score |
13.000565 |