Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat

Autores
Arias, Claudia; Montero Bulacio, Enrique; Rigalli, Nicolás; Romagnoli, Martín; Curin, Facundo; Gonzalez, Fernanda Gabriela; Otegui, María Elena; Portapila, Margarita
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In recent years, the application of remote sensing techniques is gaining a growing interest and importance in agriculture. Researchers often combine data from near-infrared and red spectral bands according to their specific objectives. These types of combinations present the disadvantage of lack of sensitivity due to using a single or limited group of bands. In this work on-farm canopy spectral reflectance (CSR) data, composing of ten spectral bands (SBs) plus four spectral vegetation indices (SVIs), is considered in a joint manner to set up a methodology capable to identify genotype by environment interaction (GxE) in wheat. Spectral data are analysed over five wheat genotypes grown in five different environments. Historically breeders have recognized the potentially negative implications of GxE in selection and cultivar deployment and have focused on developing tools and resources to quantify it. We propose to perform a statistical batch processing, applying two-way analysis of variance to multiple spectral data, with genotype and environment as fixed factors. Results prove that this methodology performs well in both directions, capturing differences between genotypes within a single environment, and between environments for a single genotype, representing a step forward to converting spectral data into knowledge for the subject of GxE.
EEA Pergamino
Fil: Arias, Claudia. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fil: Montero Bulacio, Enrique. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fil: Rigalli, Nicolás. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fil: Romagnoli, Martín. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fil: Curin, Facundo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA Pergamino); Argentina
Fil: González, Fernanda G. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET- UNNOBA Pergamino); Argentina
Fil: González, Fernanda G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Ecofisiología; Argentina
Fil: Otegui, María Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Otegui, María Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Otegui, María Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Ecofisiología; Argentina
Fil: Portapila, Margarita. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fuente
International Journal of Remote Sensing 42 (10) : 3660–3680, (March 2021)
Materia
Trigo
Genotipos
Interacción Genotipo Ambiente
Wheat
Genotypes
Genotype Environment Interaction
Pergamino, Buenos Aires
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/8955

id INTADig_0e1914758c7fe896f127f123a8e073ab
oai_identifier_str oai:localhost:20.500.12123/8955
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheatArias, ClaudiaMontero Bulacio, EnriqueRigalli, NicolásRomagnoli, MartínCurin, FacundoGonzalez, Fernanda GabrielaOtegui, María ElenaPortapila, MargaritaTrigoGenotiposInteracción Genotipo AmbienteWheatGenotypesGenotype Environment InteractionPergamino, Buenos AiresIn recent years, the application of remote sensing techniques is gaining a growing interest and importance in agriculture. Researchers often combine data from near-infrared and red spectral bands according to their specific objectives. These types of combinations present the disadvantage of lack of sensitivity due to using a single or limited group of bands. In this work on-farm canopy spectral reflectance (CSR) data, composing of ten spectral bands (SBs) plus four spectral vegetation indices (SVIs), is considered in a joint manner to set up a methodology capable to identify genotype by environment interaction (GxE) in wheat. Spectral data are analysed over five wheat genotypes grown in five different environments. Historically breeders have recognized the potentially negative implications of GxE in selection and cultivar deployment and have focused on developing tools and resources to quantify it. We propose to perform a statistical batch processing, applying two-way analysis of variance to multiple spectral data, with genotype and environment as fixed factors. Results prove that this methodology performs well in both directions, capturing differences between genotypes within a single environment, and between environments for a single genotype, representing a step forward to converting spectral data into knowledge for the subject of GxE.EEA PergaminoFil: Arias, Claudia. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); ArgentinaFil: Montero Bulacio, Enrique. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); ArgentinaFil: Rigalli, Nicolás. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); ArgentinaFil: Romagnoli, Martín. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); ArgentinaFil: Curin, Facundo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA Pergamino); ArgentinaFil: González, Fernanda G. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET- UNNOBA Pergamino); ArgentinaFil: González, Fernanda G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Ecofisiología; ArgentinaFil: Otegui, María Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Otegui, María Elena. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Otegui, María Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Ecofisiología; ArgentinaFil: Portapila, Margarita. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); ArgentinaTaylor & Francis2021-03-23T11:13:44Z2021-03-23T11:13:44Z2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/8955https://www.tandfonline.com/doi/abs/10.1080/01431161.2021.1875148https://doi.org/10.1080/01431161.2021.1875148International Journal of Remote Sensing 42 (10) : 3660–3680, (March 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:45:09Zoai:localhost:20.500.12123/8955instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:10.231INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat
title Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat
spellingShingle Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat
Arias, Claudia
Trigo
Genotipos
Interacción Genotipo Ambiente
Wheat
Genotypes
Genotype Environment Interaction
Pergamino, Buenos Aires
title_short Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat
title_full Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat
title_fullStr Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat
title_full_unstemmed Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat
title_sort Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat
dc.creator.none.fl_str_mv Arias, Claudia
Montero Bulacio, Enrique
Rigalli, Nicolás
Romagnoli, Martín
Curin, Facundo
Gonzalez, Fernanda Gabriela
Otegui, María Elena
Portapila, Margarita
author Arias, Claudia
author_facet Arias, Claudia
Montero Bulacio, Enrique
Rigalli, Nicolás
Romagnoli, Martín
Curin, Facundo
Gonzalez, Fernanda Gabriela
Otegui, María Elena
Portapila, Margarita
author_role author
author2 Montero Bulacio, Enrique
Rigalli, Nicolás
Romagnoli, Martín
Curin, Facundo
Gonzalez, Fernanda Gabriela
Otegui, María Elena
Portapila, Margarita
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Trigo
Genotipos
Interacción Genotipo Ambiente
Wheat
Genotypes
Genotype Environment Interaction
Pergamino, Buenos Aires
topic Trigo
Genotipos
Interacción Genotipo Ambiente
Wheat
Genotypes
Genotype Environment Interaction
Pergamino, Buenos Aires
dc.description.none.fl_txt_mv In recent years, the application of remote sensing techniques is gaining a growing interest and importance in agriculture. Researchers often combine data from near-infrared and red spectral bands according to their specific objectives. These types of combinations present the disadvantage of lack of sensitivity due to using a single or limited group of bands. In this work on-farm canopy spectral reflectance (CSR) data, composing of ten spectral bands (SBs) plus four spectral vegetation indices (SVIs), is considered in a joint manner to set up a methodology capable to identify genotype by environment interaction (GxE) in wheat. Spectral data are analysed over five wheat genotypes grown in five different environments. Historically breeders have recognized the potentially negative implications of GxE in selection and cultivar deployment and have focused on developing tools and resources to quantify it. We propose to perform a statistical batch processing, applying two-way analysis of variance to multiple spectral data, with genotype and environment as fixed factors. Results prove that this methodology performs well in both directions, capturing differences between genotypes within a single environment, and between environments for a single genotype, representing a step forward to converting spectral data into knowledge for the subject of GxE.
EEA Pergamino
Fil: Arias, Claudia. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fil: Montero Bulacio, Enrique. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fil: Rigalli, Nicolás. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fil: Romagnoli, Martín. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fil: Curin, Facundo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA Pergamino); Argentina
Fil: González, Fernanda G. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET- UNNOBA Pergamino); Argentina
Fil: González, Fernanda G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Ecofisiología; Argentina
Fil: Otegui, María Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Otegui, María Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Otegui, María Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Ecofisiología; Argentina
Fil: Portapila, Margarita. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
description In recent years, the application of remote sensing techniques is gaining a growing interest and importance in agriculture. Researchers often combine data from near-infrared and red spectral bands according to their specific objectives. These types of combinations present the disadvantage of lack of sensitivity due to using a single or limited group of bands. In this work on-farm canopy spectral reflectance (CSR) data, composing of ten spectral bands (SBs) plus four spectral vegetation indices (SVIs), is considered in a joint manner to set up a methodology capable to identify genotype by environment interaction (GxE) in wheat. Spectral data are analysed over five wheat genotypes grown in five different environments. Historically breeders have recognized the potentially negative implications of GxE in selection and cultivar deployment and have focused on developing tools and resources to quantify it. We propose to perform a statistical batch processing, applying two-way analysis of variance to multiple spectral data, with genotype and environment as fixed factors. Results prove that this methodology performs well in both directions, capturing differences between genotypes within a single environment, and between environments for a single genotype, representing a step forward to converting spectral data into knowledge for the subject of GxE.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-23T11:13:44Z
2021-03-23T11:13:44Z
2021-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/8955
https://www.tandfonline.com/doi/abs/10.1080/01431161.2021.1875148
https://doi.org/10.1080/01431161.2021.1875148
url http://hdl.handle.net/20.500.12123/8955
https://www.tandfonline.com/doi/abs/10.1080/01431161.2021.1875148
https://doi.org/10.1080/01431161.2021.1875148
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv International Journal of Remote Sensing 42 (10) : 3660–3680, (March 2021)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619151843262464
score 12.559606