Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat
- Autores
- Arias, Claudia; Montero Bulacio, Enrique; Rigalli, Nicolás; Romagnoli, Martín; Curin, Facundo; Gonzalez, Fernanda Gabriela; Otegui, María Elena; Portapila, Margarita
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In recent years, the application of remote sensing techniques is gaining a growing interest and importance in agriculture. Researchers often combine data from near-infrared and red spectral bands according to their specific objectives. These types of combinations present the disadvantage of lack of sensitivity due to using a single or limited group of bands. In this work on-farm canopy spectral reflectance (CSR) data, composing of ten spectral bands (SBs) plus four spectral vegetation indices (SVIs), is considered in a joint manner to set up a methodology capable to identify genotype by environment interaction (GxE) in wheat. Spectral data are analysed over five wheat genotypes grown in five different environments. Historically breeders have recognized the potentially negative implications of GxE in selection and cultivar deployment and have focused on developing tools and resources to quantify it. We propose to perform a statistical batch processing, applying two-way analysis of variance to multiple spectral data, with genotype and environment as fixed factors. Results prove that this methodology performs well in both directions, capturing differences between genotypes within a single environment, and between environments for a single genotype, representing a step forward to converting spectral data into knowledge for the subject of GxE.
EEA Pergamino
Fil: Arias, Claudia. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fil: Montero Bulacio, Enrique. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fil: Rigalli, Nicolás. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fil: Romagnoli, Martín. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina
Fil: Curin, Facundo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA Pergamino); Argentina
Fil: González, Fernanda G. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET- UNNOBA Pergamino); Argentina
Fil: González, Fernanda G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Ecofisiología; Argentina
Fil: Otegui, María Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Otegui, María Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Otegui, María Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Ecofisiología; Argentina
Fil: Portapila, Margarita. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina - Fuente
- International Journal of Remote Sensing 42 (10) : 3660–3680, (March 2021)
- Materia
-
Trigo
Genotipos
Interacción Genotipo Ambiente
Wheat
Genotypes
Genotype Environment Interaction
Pergamino, Buenos Aires - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/8955
Ver los metadatos del registro completo
id |
INTADig_0e1914758c7fe896f127f123a8e073ab |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/8955 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheatArias, ClaudiaMontero Bulacio, EnriqueRigalli, NicolásRomagnoli, MartínCurin, FacundoGonzalez, Fernanda GabrielaOtegui, María ElenaPortapila, MargaritaTrigoGenotiposInteracción Genotipo AmbienteWheatGenotypesGenotype Environment InteractionPergamino, Buenos AiresIn recent years, the application of remote sensing techniques is gaining a growing interest and importance in agriculture. Researchers often combine data from near-infrared and red spectral bands according to their specific objectives. These types of combinations present the disadvantage of lack of sensitivity due to using a single or limited group of bands. In this work on-farm canopy spectral reflectance (CSR) data, composing of ten spectral bands (SBs) plus four spectral vegetation indices (SVIs), is considered in a joint manner to set up a methodology capable to identify genotype by environment interaction (GxE) in wheat. Spectral data are analysed over five wheat genotypes grown in five different environments. Historically breeders have recognized the potentially negative implications of GxE in selection and cultivar deployment and have focused on developing tools and resources to quantify it. We propose to perform a statistical batch processing, applying two-way analysis of variance to multiple spectral data, with genotype and environment as fixed factors. Results prove that this methodology performs well in both directions, capturing differences between genotypes within a single environment, and between environments for a single genotype, representing a step forward to converting spectral data into knowledge for the subject of GxE.EEA PergaminoFil: Arias, Claudia. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); ArgentinaFil: Montero Bulacio, Enrique. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); ArgentinaFil: Rigalli, Nicolás. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); ArgentinaFil: Romagnoli, Martín. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); ArgentinaFil: Curin, Facundo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA Pergamino); ArgentinaFil: González, Fernanda G. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET- UNNOBA Pergamino); ArgentinaFil: González, Fernanda G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Ecofisiología; ArgentinaFil: Otegui, María Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Otegui, María Elena. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Otegui, María Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Ecofisiología; ArgentinaFil: Portapila, Margarita. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); ArgentinaTaylor & Francis2021-03-23T11:13:44Z2021-03-23T11:13:44Z2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/8955https://www.tandfonline.com/doi/abs/10.1080/01431161.2021.1875148https://doi.org/10.1080/01431161.2021.1875148International Journal of Remote Sensing 42 (10) : 3660–3680, (March 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:45:09Zoai:localhost:20.500.12123/8955instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:10.231INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat |
title |
Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat |
spellingShingle |
Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat Arias, Claudia Trigo Genotipos Interacción Genotipo Ambiente Wheat Genotypes Genotype Environment Interaction Pergamino, Buenos Aires |
title_short |
Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat |
title_full |
Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat |
title_fullStr |
Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat |
title_full_unstemmed |
Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat |
title_sort |
Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat |
dc.creator.none.fl_str_mv |
Arias, Claudia Montero Bulacio, Enrique Rigalli, Nicolás Romagnoli, Martín Curin, Facundo Gonzalez, Fernanda Gabriela Otegui, María Elena Portapila, Margarita |
author |
Arias, Claudia |
author_facet |
Arias, Claudia Montero Bulacio, Enrique Rigalli, Nicolás Romagnoli, Martín Curin, Facundo Gonzalez, Fernanda Gabriela Otegui, María Elena Portapila, Margarita |
author_role |
author |
author2 |
Montero Bulacio, Enrique Rigalli, Nicolás Romagnoli, Martín Curin, Facundo Gonzalez, Fernanda Gabriela Otegui, María Elena Portapila, Margarita |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Trigo Genotipos Interacción Genotipo Ambiente Wheat Genotypes Genotype Environment Interaction Pergamino, Buenos Aires |
topic |
Trigo Genotipos Interacción Genotipo Ambiente Wheat Genotypes Genotype Environment Interaction Pergamino, Buenos Aires |
dc.description.none.fl_txt_mv |
In recent years, the application of remote sensing techniques is gaining a growing interest and importance in agriculture. Researchers often combine data from near-infrared and red spectral bands according to their specific objectives. These types of combinations present the disadvantage of lack of sensitivity due to using a single or limited group of bands. In this work on-farm canopy spectral reflectance (CSR) data, composing of ten spectral bands (SBs) plus four spectral vegetation indices (SVIs), is considered in a joint manner to set up a methodology capable to identify genotype by environment interaction (GxE) in wheat. Spectral data are analysed over five wheat genotypes grown in five different environments. Historically breeders have recognized the potentially negative implications of GxE in selection and cultivar deployment and have focused on developing tools and resources to quantify it. We propose to perform a statistical batch processing, applying two-way analysis of variance to multiple spectral data, with genotype and environment as fixed factors. Results prove that this methodology performs well in both directions, capturing differences between genotypes within a single environment, and between environments for a single genotype, representing a step forward to converting spectral data into knowledge for the subject of GxE. EEA Pergamino Fil: Arias, Claudia. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina Fil: Montero Bulacio, Enrique. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina Fil: Rigalli, Nicolás. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina Fil: Romagnoli, Martín. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina Fil: Curin, Facundo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA Pergamino); Argentina Fil: González, Fernanda G. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET- UNNOBA Pergamino); Argentina Fil: González, Fernanda G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Ecofisiología; Argentina Fil: Otegui, María Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Otegui, María Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina Fil: Otegui, María Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Ecofisiología; Argentina Fil: Portapila, Margarita. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET, ROSARIO); Argentina |
description |
In recent years, the application of remote sensing techniques is gaining a growing interest and importance in agriculture. Researchers often combine data from near-infrared and red spectral bands according to their specific objectives. These types of combinations present the disadvantage of lack of sensitivity due to using a single or limited group of bands. In this work on-farm canopy spectral reflectance (CSR) data, composing of ten spectral bands (SBs) plus four spectral vegetation indices (SVIs), is considered in a joint manner to set up a methodology capable to identify genotype by environment interaction (GxE) in wheat. Spectral data are analysed over five wheat genotypes grown in five different environments. Historically breeders have recognized the potentially negative implications of GxE in selection and cultivar deployment and have focused on developing tools and resources to quantify it. We propose to perform a statistical batch processing, applying two-way analysis of variance to multiple spectral data, with genotype and environment as fixed factors. Results prove that this methodology performs well in both directions, capturing differences between genotypes within a single environment, and between environments for a single genotype, representing a step forward to converting spectral data into knowledge for the subject of GxE. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-23T11:13:44Z 2021-03-23T11:13:44Z 2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/8955 https://www.tandfonline.com/doi/abs/10.1080/01431161.2021.1875148 https://doi.org/10.1080/01431161.2021.1875148 |
url |
http://hdl.handle.net/20.500.12123/8955 https://www.tandfonline.com/doi/abs/10.1080/01431161.2021.1875148 https://doi.org/10.1080/01431161.2021.1875148 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
International Journal of Remote Sensing 42 (10) : 3660–3680, (March 2021) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619151843262464 |
score |
12.559606 |