Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and...

Autores
Bahjat, Noor Maiwan; Yildiz, Mehtap; Nadeem, Muhammad Azhar; Morales Sanfurgo, Hugo Andres; Wohlfeiler Altavilla, Josefina; Baloch, Faheem Shehzad; Tunçtürk, Murat; Koçak, Metin; Yong, Suk Chung; Grzebelus, Dariusz; Sadık, Gökhan; Kuzğun, Cansu; Cavagnaro, Pablo
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Knowledge about the degree of genetic diversity and population structure is crucial as it facilitates novel variations that can be used in breeding programs. Similarly, genome-wide association studies (GWAS) can reveal candidate genes controlling traits of interest. Sugar beet is a major industrial crops worldwide, generating 20% of the world’s total sugar production. In this work, using genotyping by sequencing (GBS)-derived SNP and silicoDArT markers, we present new insights into the genetic structure and level of genetic diversity in an international sugar beet germplasm (94 accessions from 16 countries). We also performed GWAS to identify candidate genes for agriculturally-relevant traits. Results: After applying various filtering criteria, a total of 4,609 high-quality non-redundant SNPs and 6,950 silicoDArT markers were used for genetic analyses. Calculation of various diversity indices using the SNP (e.g., mean gene diversity: 0.31, MAF: 0.22) and silicoDArT (mean gene diversity: 0.21, MAF: 0.12) data sets revealed the existence of a good level of conserved genetic diversity. Cluster analysis by UPGMA revealed three and two distinct clusters for SNP and DArT data, respectively, with accessions being grouped in general agreement with their geographical origins and their tap root color. Coincidently, structure analysis indicated three (K = 3) and two (K = 2) subpopulations for SNP and DArT data, respectively, with accessions in each subpopulation sharing similar geographic origins and root color; and comparable clustering patterns were also found by principal component analysis. GWAS on 13 root and leaf phenotypic traits allowed the identification of 35 significant marker-trait associations for nine traits and, based on predicted functions of the genes in the genomic regions surrounding the significant markers, 25 candidate genes were identified for four root (fresh weight, width, length, and color) and three leaf traits (shape, blade color, and veins color). Conclusions: The present work unveiled conserved genetic diversity–evidenced both genetically (by SNP and silicoDArT markers) and phenotypically- exploitable in breeding programs and germplasm curation of sugar beet. Results from GWAS and candidate gene analyses provide a frame work for future studies aiming at deciphering the genetic basis underlying relevant traits for sugar beet and related crop types within Beta vulgaris subsp. vulgaris.
EEA La Consulta
Fil: Bahjat, Noor Maiwan. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Yıldız, Mehtap. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Nadeem, Muhammad Azhar. Mersin University. Faculty of Sciences. Department of Biotechnology; Turquía
Fil: Nadeem, Muhammad Azhar. Sivas University of Science and Technology. Faculty of Agricultural Sciences and Technologies. Department of Field Crops; Turquía
Fil: Morales Sanfurgo, Hugo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; Argentina
Fil: Morales Sanfurgo, Hugo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Morales Sanfurgo, Hugo Andres. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Morales Sanfurgo, Hugo Andres. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; Argentina
Fil: Wohlfeiler, Josefina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; Argentina
Fil: Wohlfeiler, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Baloch, Faheem Shehzad. Mersin University. Faculty of Sciences. Department of Biotechnology; Turquía
Fil: Baloch, Faheem Shehzad. Jeju National University. Department of Plant Resources and Environment; República de Corea
Fil: Tunçtürk, Murat. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Field Crops; Turquía
Fil: Koçak, Metin. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Yong, Suk Chung. Jeju National University. Department of Plant Resources and Environment; República de Corea
Fil: Grzebelus, Dariusz. University of Agriculture in Krakow. Faculty of Biotechnology and Horticulture. Department of Plant Biology and Biotechnology; Polonia
Fil: Sadık, Gökhan. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Kuzğun, Cansu. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Cavagnaro, Pablo Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina
Fil: Cavagnaro, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cavagnaro, Pablo Federico. University of Agriculture in Krakow. Faculty of Biotechnology and Horticulture. Department of Plant Biology, and Biotechnology; Polonia
Fuente
BMC Plant Biology 25 : Article number: 523. (2025)
Materia
Remolacha Azucarera
Germoplasma
Variación Genética
Marcadores Genéticos
Genotipado
Gen Candidato
Sugar Beet
Beta vulgaris
Germplasm
Genetic Variation
Genetic Markers
Genotyping
Candidate Genes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/23808

id INTADig_95a77feede15ead03bacd80cb3b67d3d
oai_identifier_str oai:localhost:20.500.12123/23808
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collectionBahjat, Noor MaiwanYildiz, MehtapNadeem, Muhammad AzharMorales Sanfurgo, Hugo AndresWohlfeiler Altavilla, JosefinaBaloch, Faheem ShehzadTunçtürk, MuratKoçak, MetinYong, Suk ChungGrzebelus, DariuszSadık, GökhanKuzğun, CansuCavagnaro, PabloRemolacha AzucareraGermoplasmaVariación GenéticaMarcadores GenéticosGenotipadoGen CandidatoSugar BeetBeta vulgarisGermplasmGenetic VariationGenetic MarkersGenotypingCandidate GenesBackground: Knowledge about the degree of genetic diversity and population structure is crucial as it facilitates novel variations that can be used in breeding programs. Similarly, genome-wide association studies (GWAS) can reveal candidate genes controlling traits of interest. Sugar beet is a major industrial crops worldwide, generating 20% of the world’s total sugar production. In this work, using genotyping by sequencing (GBS)-derived SNP and silicoDArT markers, we present new insights into the genetic structure and level of genetic diversity in an international sugar beet germplasm (94 accessions from 16 countries). We also performed GWAS to identify candidate genes for agriculturally-relevant traits. Results: After applying various filtering criteria, a total of 4,609 high-quality non-redundant SNPs and 6,950 silicoDArT markers were used for genetic analyses. Calculation of various diversity indices using the SNP (e.g., mean gene diversity: 0.31, MAF: 0.22) and silicoDArT (mean gene diversity: 0.21, MAF: 0.12) data sets revealed the existence of a good level of conserved genetic diversity. Cluster analysis by UPGMA revealed three and two distinct clusters for SNP and DArT data, respectively, with accessions being grouped in general agreement with their geographical origins and their tap root color. Coincidently, structure analysis indicated three (K = 3) and two (K = 2) subpopulations for SNP and DArT data, respectively, with accessions in each subpopulation sharing similar geographic origins and root color; and comparable clustering patterns were also found by principal component analysis. GWAS on 13 root and leaf phenotypic traits allowed the identification of 35 significant marker-trait associations for nine traits and, based on predicted functions of the genes in the genomic regions surrounding the significant markers, 25 candidate genes were identified for four root (fresh weight, width, length, and color) and three leaf traits (shape, blade color, and veins color). Conclusions: The present work unveiled conserved genetic diversity–evidenced both genetically (by SNP and silicoDArT markers) and phenotypically- exploitable in breeding programs and germplasm curation of sugar beet. Results from GWAS and candidate gene analyses provide a frame work for future studies aiming at deciphering the genetic basis underlying relevant traits for sugar beet and related crop types within Beta vulgaris subsp. vulgaris.EEA La ConsultaFil: Bahjat, Noor Maiwan. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; TurquíaFil: Yıldız, Mehtap. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; TurquíaFil: Nadeem, Muhammad Azhar. Mersin University. Faculty of Sciences. Department of Biotechnology; TurquíaFil: Nadeem, Muhammad Azhar. Sivas University of Science and Technology. Faculty of Agricultural Sciences and Technologies. Department of Field Crops; TurquíaFil: Morales Sanfurgo, Hugo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; ArgentinaFil: Morales Sanfurgo, Hugo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Morales Sanfurgo, Hugo Andres. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Morales Sanfurgo, Hugo Andres. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; ArgentinaFil: Wohlfeiler, Josefina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; ArgentinaFil: Wohlfeiler, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Baloch, Faheem Shehzad. Mersin University. Faculty of Sciences. Department of Biotechnology; TurquíaFil: Baloch, Faheem Shehzad. Jeju National University. Department of Plant Resources and Environment; República de CoreaFil: Tunçtürk, Murat. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Field Crops; TurquíaFil: Koçak, Metin. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; TurquíaFil: Yong, Suk Chung. Jeju National University. Department of Plant Resources and Environment; República de CoreaFil: Grzebelus, Dariusz. University of Agriculture in Krakow. Faculty of Biotechnology and Horticulture. Department of Plant Biology and Biotechnology; PoloniaFil: Sadık, Gökhan. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; TurquíaFil: Kuzğun, Cansu. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; TurquíaFil: Cavagnaro, Pablo Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Cavagnaro, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cavagnaro, Pablo Federico. University of Agriculture in Krakow. Faculty of Biotechnology and Horticulture. Department of Plant Biology, and Biotechnology; PoloniaBMC2025-09-15T13:10:59Z2025-09-15T13:10:59Z2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/23808https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-025-06525-71471-2229https://doi.org/10.1186/s12870-025-06525-7BMC Plant Biology 25 : Article number: 523. (2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:47:31Zoai:localhost:20.500.12123/23808instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:47:32.249INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection
title Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection
spellingShingle Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection
Bahjat, Noor Maiwan
Remolacha Azucarera
Germoplasma
Variación Genética
Marcadores Genéticos
Genotipado
Gen Candidato
Sugar Beet
Beta vulgaris
Germplasm
Genetic Variation
Genetic Markers
Genotyping
Candidate Genes
title_short Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection
title_full Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection
title_fullStr Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection
title_full_unstemmed Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection
title_sort Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection
dc.creator.none.fl_str_mv Bahjat, Noor Maiwan
Yildiz, Mehtap
Nadeem, Muhammad Azhar
Morales Sanfurgo, Hugo Andres
Wohlfeiler Altavilla, Josefina
Baloch, Faheem Shehzad
Tunçtürk, Murat
Koçak, Metin
Yong, Suk Chung
Grzebelus, Dariusz
Sadık, Gökhan
Kuzğun, Cansu
Cavagnaro, Pablo
author Bahjat, Noor Maiwan
author_facet Bahjat, Noor Maiwan
Yildiz, Mehtap
Nadeem, Muhammad Azhar
Morales Sanfurgo, Hugo Andres
Wohlfeiler Altavilla, Josefina
Baloch, Faheem Shehzad
Tunçtürk, Murat
Koçak, Metin
Yong, Suk Chung
Grzebelus, Dariusz
Sadık, Gökhan
Kuzğun, Cansu
Cavagnaro, Pablo
author_role author
author2 Yildiz, Mehtap
Nadeem, Muhammad Azhar
Morales Sanfurgo, Hugo Andres
Wohlfeiler Altavilla, Josefina
Baloch, Faheem Shehzad
Tunçtürk, Murat
Koçak, Metin
Yong, Suk Chung
Grzebelus, Dariusz
Sadık, Gökhan
Kuzğun, Cansu
Cavagnaro, Pablo
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Remolacha Azucarera
Germoplasma
Variación Genética
Marcadores Genéticos
Genotipado
Gen Candidato
Sugar Beet
Beta vulgaris
Germplasm
Genetic Variation
Genetic Markers
Genotyping
Candidate Genes
topic Remolacha Azucarera
Germoplasma
Variación Genética
Marcadores Genéticos
Genotipado
Gen Candidato
Sugar Beet
Beta vulgaris
Germplasm
Genetic Variation
Genetic Markers
Genotyping
Candidate Genes
dc.description.none.fl_txt_mv Background: Knowledge about the degree of genetic diversity and population structure is crucial as it facilitates novel variations that can be used in breeding programs. Similarly, genome-wide association studies (GWAS) can reveal candidate genes controlling traits of interest. Sugar beet is a major industrial crops worldwide, generating 20% of the world’s total sugar production. In this work, using genotyping by sequencing (GBS)-derived SNP and silicoDArT markers, we present new insights into the genetic structure and level of genetic diversity in an international sugar beet germplasm (94 accessions from 16 countries). We also performed GWAS to identify candidate genes for agriculturally-relevant traits. Results: After applying various filtering criteria, a total of 4,609 high-quality non-redundant SNPs and 6,950 silicoDArT markers were used for genetic analyses. Calculation of various diversity indices using the SNP (e.g., mean gene diversity: 0.31, MAF: 0.22) and silicoDArT (mean gene diversity: 0.21, MAF: 0.12) data sets revealed the existence of a good level of conserved genetic diversity. Cluster analysis by UPGMA revealed three and two distinct clusters for SNP and DArT data, respectively, with accessions being grouped in general agreement with their geographical origins and their tap root color. Coincidently, structure analysis indicated three (K = 3) and two (K = 2) subpopulations for SNP and DArT data, respectively, with accessions in each subpopulation sharing similar geographic origins and root color; and comparable clustering patterns were also found by principal component analysis. GWAS on 13 root and leaf phenotypic traits allowed the identification of 35 significant marker-trait associations for nine traits and, based on predicted functions of the genes in the genomic regions surrounding the significant markers, 25 candidate genes were identified for four root (fresh weight, width, length, and color) and three leaf traits (shape, blade color, and veins color). Conclusions: The present work unveiled conserved genetic diversity–evidenced both genetically (by SNP and silicoDArT markers) and phenotypically- exploitable in breeding programs and germplasm curation of sugar beet. Results from GWAS and candidate gene analyses provide a frame work for future studies aiming at deciphering the genetic basis underlying relevant traits for sugar beet and related crop types within Beta vulgaris subsp. vulgaris.
EEA La Consulta
Fil: Bahjat, Noor Maiwan. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Yıldız, Mehtap. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Nadeem, Muhammad Azhar. Mersin University. Faculty of Sciences. Department of Biotechnology; Turquía
Fil: Nadeem, Muhammad Azhar. Sivas University of Science and Technology. Faculty of Agricultural Sciences and Technologies. Department of Field Crops; Turquía
Fil: Morales Sanfurgo, Hugo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; Argentina
Fil: Morales Sanfurgo, Hugo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Morales Sanfurgo, Hugo Andres. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Morales Sanfurgo, Hugo Andres. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; Argentina
Fil: Wohlfeiler, Josefina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; Argentina
Fil: Wohlfeiler, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Baloch, Faheem Shehzad. Mersin University. Faculty of Sciences. Department of Biotechnology; Turquía
Fil: Baloch, Faheem Shehzad. Jeju National University. Department of Plant Resources and Environment; República de Corea
Fil: Tunçtürk, Murat. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Field Crops; Turquía
Fil: Koçak, Metin. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Yong, Suk Chung. Jeju National University. Department of Plant Resources and Environment; República de Corea
Fil: Grzebelus, Dariusz. University of Agriculture in Krakow. Faculty of Biotechnology and Horticulture. Department of Plant Biology and Biotechnology; Polonia
Fil: Sadık, Gökhan. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Kuzğun, Cansu. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Cavagnaro, Pablo Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina
Fil: Cavagnaro, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cavagnaro, Pablo Federico. University of Agriculture in Krakow. Faculty of Biotechnology and Horticulture. Department of Plant Biology, and Biotechnology; Polonia
description Background: Knowledge about the degree of genetic diversity and population structure is crucial as it facilitates novel variations that can be used in breeding programs. Similarly, genome-wide association studies (GWAS) can reveal candidate genes controlling traits of interest. Sugar beet is a major industrial crops worldwide, generating 20% of the world’s total sugar production. In this work, using genotyping by sequencing (GBS)-derived SNP and silicoDArT markers, we present new insights into the genetic structure and level of genetic diversity in an international sugar beet germplasm (94 accessions from 16 countries). We also performed GWAS to identify candidate genes for agriculturally-relevant traits. Results: After applying various filtering criteria, a total of 4,609 high-quality non-redundant SNPs and 6,950 silicoDArT markers were used for genetic analyses. Calculation of various diversity indices using the SNP (e.g., mean gene diversity: 0.31, MAF: 0.22) and silicoDArT (mean gene diversity: 0.21, MAF: 0.12) data sets revealed the existence of a good level of conserved genetic diversity. Cluster analysis by UPGMA revealed three and two distinct clusters for SNP and DArT data, respectively, with accessions being grouped in general agreement with their geographical origins and their tap root color. Coincidently, structure analysis indicated three (K = 3) and two (K = 2) subpopulations for SNP and DArT data, respectively, with accessions in each subpopulation sharing similar geographic origins and root color; and comparable clustering patterns were also found by principal component analysis. GWAS on 13 root and leaf phenotypic traits allowed the identification of 35 significant marker-trait associations for nine traits and, based on predicted functions of the genes in the genomic regions surrounding the significant markers, 25 candidate genes were identified for four root (fresh weight, width, length, and color) and three leaf traits (shape, blade color, and veins color). Conclusions: The present work unveiled conserved genetic diversity–evidenced both genetically (by SNP and silicoDArT markers) and phenotypically- exploitable in breeding programs and germplasm curation of sugar beet. Results from GWAS and candidate gene analyses provide a frame work for future studies aiming at deciphering the genetic basis underlying relevant traits for sugar beet and related crop types within Beta vulgaris subsp. vulgaris.
publishDate 2025
dc.date.none.fl_str_mv 2025-09-15T13:10:59Z
2025-09-15T13:10:59Z
2025-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/23808
https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-025-06525-7
1471-2229
https://doi.org/10.1186/s12870-025-06525-7
url http://hdl.handle.net/20.500.12123/23808
https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-025-06525-7
https://doi.org/10.1186/s12870-025-06525-7
identifier_str_mv 1471-2229
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv BMC
publisher.none.fl_str_mv BMC
dc.source.none.fl_str_mv BMC Plant Biology 25 : Article number: 523. (2025)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619209433153536
score 12.559606