Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and...
- Autores
- Bahjat, Noor Maiwan; Yildiz, Mehtap; Nadeem, Muhammad Azhar; Morales Sanfurgo, Hugo Andres; Wohlfeiler Altavilla, Josefina; Baloch, Faheem Shehzad; Tunçtürk, Murat; Koçak, Metin; Yong, Suk Chung; Grzebelus, Dariusz; Sadık, Gökhan; Kuzğun, Cansu; Cavagnaro, Pablo
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Knowledge about the degree of genetic diversity and population structure is crucial as it facilitates novel variations that can be used in breeding programs. Similarly, genome-wide association studies (GWAS) can reveal candidate genes controlling traits of interest. Sugar beet is a major industrial crops worldwide, generating 20% of the world’s total sugar production. In this work, using genotyping by sequencing (GBS)-derived SNP and silicoDArT markers, we present new insights into the genetic structure and level of genetic diversity in an international sugar beet germplasm (94 accessions from 16 countries). We also performed GWAS to identify candidate genes for agriculturally-relevant traits. Results: After applying various filtering criteria, a total of 4,609 high-quality non-redundant SNPs and 6,950 silicoDArT markers were used for genetic analyses. Calculation of various diversity indices using the SNP (e.g., mean gene diversity: 0.31, MAF: 0.22) and silicoDArT (mean gene diversity: 0.21, MAF: 0.12) data sets revealed the existence of a good level of conserved genetic diversity. Cluster analysis by UPGMA revealed three and two distinct clusters for SNP and DArT data, respectively, with accessions being grouped in general agreement with their geographical origins and their tap root color. Coincidently, structure analysis indicated three (K = 3) and two (K = 2) subpopulations for SNP and DArT data, respectively, with accessions in each subpopulation sharing similar geographic origins and root color; and comparable clustering patterns were also found by principal component analysis. GWAS on 13 root and leaf phenotypic traits allowed the identification of 35 significant marker-trait associations for nine traits and, based on predicted functions of the genes in the genomic regions surrounding the significant markers, 25 candidate genes were identified for four root (fresh weight, width, length, and color) and three leaf traits (shape, blade color, and veins color). Conclusions: The present work unveiled conserved genetic diversity–evidenced both genetically (by SNP and silicoDArT markers) and phenotypically- exploitable in breeding programs and germplasm curation of sugar beet. Results from GWAS and candidate gene analyses provide a frame work for future studies aiming at deciphering the genetic basis underlying relevant traits for sugar beet and related crop types within Beta vulgaris subsp. vulgaris.
EEA La Consulta
Fil: Bahjat, Noor Maiwan. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Yıldız, Mehtap. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Nadeem, Muhammad Azhar. Mersin University. Faculty of Sciences. Department of Biotechnology; Turquía
Fil: Nadeem, Muhammad Azhar. Sivas University of Science and Technology. Faculty of Agricultural Sciences and Technologies. Department of Field Crops; Turquía
Fil: Morales Sanfurgo, Hugo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; Argentina
Fil: Morales Sanfurgo, Hugo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Morales Sanfurgo, Hugo Andres. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Morales Sanfurgo, Hugo Andres. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; Argentina
Fil: Wohlfeiler, Josefina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; Argentina
Fil: Wohlfeiler, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Baloch, Faheem Shehzad. Mersin University. Faculty of Sciences. Department of Biotechnology; Turquía
Fil: Baloch, Faheem Shehzad. Jeju National University. Department of Plant Resources and Environment; República de Corea
Fil: Tunçtürk, Murat. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Field Crops; Turquía
Fil: Koçak, Metin. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Yong, Suk Chung. Jeju National University. Department of Plant Resources and Environment; República de Corea
Fil: Grzebelus, Dariusz. University of Agriculture in Krakow. Faculty of Biotechnology and Horticulture. Department of Plant Biology and Biotechnology; Polonia
Fil: Sadık, Gökhan. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Kuzğun, Cansu. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía
Fil: Cavagnaro, Pablo Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina
Fil: Cavagnaro, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cavagnaro, Pablo Federico. University of Agriculture in Krakow. Faculty of Biotechnology and Horticulture. Department of Plant Biology, and Biotechnology; Polonia - Fuente
- BMC Plant Biology 25 : Article number: 523. (2025)
- Materia
-
Remolacha Azucarera
Germoplasma
Variación Genética
Marcadores Genéticos
Genotipado
Gen Candidato
Sugar Beet
Beta vulgaris
Germplasm
Genetic Variation
Genetic Markers
Genotyping
Candidate Genes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/23808
Ver los metadatos del registro completo
id |
INTADig_95a77feede15ead03bacd80cb3b67d3d |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/23808 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collectionBahjat, Noor MaiwanYildiz, MehtapNadeem, Muhammad AzharMorales Sanfurgo, Hugo AndresWohlfeiler Altavilla, JosefinaBaloch, Faheem ShehzadTunçtürk, MuratKoçak, MetinYong, Suk ChungGrzebelus, DariuszSadık, GökhanKuzğun, CansuCavagnaro, PabloRemolacha AzucareraGermoplasmaVariación GenéticaMarcadores GenéticosGenotipadoGen CandidatoSugar BeetBeta vulgarisGermplasmGenetic VariationGenetic MarkersGenotypingCandidate GenesBackground: Knowledge about the degree of genetic diversity and population structure is crucial as it facilitates novel variations that can be used in breeding programs. Similarly, genome-wide association studies (GWAS) can reveal candidate genes controlling traits of interest. Sugar beet is a major industrial crops worldwide, generating 20% of the world’s total sugar production. In this work, using genotyping by sequencing (GBS)-derived SNP and silicoDArT markers, we present new insights into the genetic structure and level of genetic diversity in an international sugar beet germplasm (94 accessions from 16 countries). We also performed GWAS to identify candidate genes for agriculturally-relevant traits. Results: After applying various filtering criteria, a total of 4,609 high-quality non-redundant SNPs and 6,950 silicoDArT markers were used for genetic analyses. Calculation of various diversity indices using the SNP (e.g., mean gene diversity: 0.31, MAF: 0.22) and silicoDArT (mean gene diversity: 0.21, MAF: 0.12) data sets revealed the existence of a good level of conserved genetic diversity. Cluster analysis by UPGMA revealed three and two distinct clusters for SNP and DArT data, respectively, with accessions being grouped in general agreement with their geographical origins and their tap root color. Coincidently, structure analysis indicated three (K = 3) and two (K = 2) subpopulations for SNP and DArT data, respectively, with accessions in each subpopulation sharing similar geographic origins and root color; and comparable clustering patterns were also found by principal component analysis. GWAS on 13 root and leaf phenotypic traits allowed the identification of 35 significant marker-trait associations for nine traits and, based on predicted functions of the genes in the genomic regions surrounding the significant markers, 25 candidate genes were identified for four root (fresh weight, width, length, and color) and three leaf traits (shape, blade color, and veins color). Conclusions: The present work unveiled conserved genetic diversity–evidenced both genetically (by SNP and silicoDArT markers) and phenotypically- exploitable in breeding programs and germplasm curation of sugar beet. Results from GWAS and candidate gene analyses provide a frame work for future studies aiming at deciphering the genetic basis underlying relevant traits for sugar beet and related crop types within Beta vulgaris subsp. vulgaris.EEA La ConsultaFil: Bahjat, Noor Maiwan. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; TurquíaFil: Yıldız, Mehtap. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; TurquíaFil: Nadeem, Muhammad Azhar. Mersin University. Faculty of Sciences. Department of Biotechnology; TurquíaFil: Nadeem, Muhammad Azhar. Sivas University of Science and Technology. Faculty of Agricultural Sciences and Technologies. Department of Field Crops; TurquíaFil: Morales Sanfurgo, Hugo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; ArgentinaFil: Morales Sanfurgo, Hugo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Morales Sanfurgo, Hugo Andres. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Morales Sanfurgo, Hugo Andres. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; ArgentinaFil: Wohlfeiler, Josefina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; ArgentinaFil: Wohlfeiler, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Baloch, Faheem Shehzad. Mersin University. Faculty of Sciences. Department of Biotechnology; TurquíaFil: Baloch, Faheem Shehzad. Jeju National University. Department of Plant Resources and Environment; República de CoreaFil: Tunçtürk, Murat. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Field Crops; TurquíaFil: Koçak, Metin. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; TurquíaFil: Yong, Suk Chung. Jeju National University. Department of Plant Resources and Environment; República de CoreaFil: Grzebelus, Dariusz. University of Agriculture in Krakow. Faculty of Biotechnology and Horticulture. Department of Plant Biology and Biotechnology; PoloniaFil: Sadık, Gökhan. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; TurquíaFil: Kuzğun, Cansu. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; TurquíaFil: Cavagnaro, Pablo Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Cavagnaro, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cavagnaro, Pablo Federico. University of Agriculture in Krakow. Faculty of Biotechnology and Horticulture. Department of Plant Biology, and Biotechnology; PoloniaBMC2025-09-15T13:10:59Z2025-09-15T13:10:59Z2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/23808https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-025-06525-71471-2229https://doi.org/10.1186/s12870-025-06525-7BMC Plant Biology 25 : Article number: 523. (2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:47:31Zoai:localhost:20.500.12123/23808instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:47:32.249INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection |
title |
Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection |
spellingShingle |
Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection Bahjat, Noor Maiwan Remolacha Azucarera Germoplasma Variación Genética Marcadores Genéticos Genotipado Gen Candidato Sugar Beet Beta vulgaris Germplasm Genetic Variation Genetic Markers Genotyping Candidate Genes |
title_short |
Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection |
title_full |
Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection |
title_fullStr |
Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection |
title_full_unstemmed |
Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection |
title_sort |
Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection |
dc.creator.none.fl_str_mv |
Bahjat, Noor Maiwan Yildiz, Mehtap Nadeem, Muhammad Azhar Morales Sanfurgo, Hugo Andres Wohlfeiler Altavilla, Josefina Baloch, Faheem Shehzad Tunçtürk, Murat Koçak, Metin Yong, Suk Chung Grzebelus, Dariusz Sadık, Gökhan Kuzğun, Cansu Cavagnaro, Pablo |
author |
Bahjat, Noor Maiwan |
author_facet |
Bahjat, Noor Maiwan Yildiz, Mehtap Nadeem, Muhammad Azhar Morales Sanfurgo, Hugo Andres Wohlfeiler Altavilla, Josefina Baloch, Faheem Shehzad Tunçtürk, Murat Koçak, Metin Yong, Suk Chung Grzebelus, Dariusz Sadık, Gökhan Kuzğun, Cansu Cavagnaro, Pablo |
author_role |
author |
author2 |
Yildiz, Mehtap Nadeem, Muhammad Azhar Morales Sanfurgo, Hugo Andres Wohlfeiler Altavilla, Josefina Baloch, Faheem Shehzad Tunçtürk, Murat Koçak, Metin Yong, Suk Chung Grzebelus, Dariusz Sadık, Gökhan Kuzğun, Cansu Cavagnaro, Pablo |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Remolacha Azucarera Germoplasma Variación Genética Marcadores Genéticos Genotipado Gen Candidato Sugar Beet Beta vulgaris Germplasm Genetic Variation Genetic Markers Genotyping Candidate Genes |
topic |
Remolacha Azucarera Germoplasma Variación Genética Marcadores Genéticos Genotipado Gen Candidato Sugar Beet Beta vulgaris Germplasm Genetic Variation Genetic Markers Genotyping Candidate Genes |
dc.description.none.fl_txt_mv |
Background: Knowledge about the degree of genetic diversity and population structure is crucial as it facilitates novel variations that can be used in breeding programs. Similarly, genome-wide association studies (GWAS) can reveal candidate genes controlling traits of interest. Sugar beet is a major industrial crops worldwide, generating 20% of the world’s total sugar production. In this work, using genotyping by sequencing (GBS)-derived SNP and silicoDArT markers, we present new insights into the genetic structure and level of genetic diversity in an international sugar beet germplasm (94 accessions from 16 countries). We also performed GWAS to identify candidate genes for agriculturally-relevant traits. Results: After applying various filtering criteria, a total of 4,609 high-quality non-redundant SNPs and 6,950 silicoDArT markers were used for genetic analyses. Calculation of various diversity indices using the SNP (e.g., mean gene diversity: 0.31, MAF: 0.22) and silicoDArT (mean gene diversity: 0.21, MAF: 0.12) data sets revealed the existence of a good level of conserved genetic diversity. Cluster analysis by UPGMA revealed three and two distinct clusters for SNP and DArT data, respectively, with accessions being grouped in general agreement with their geographical origins and their tap root color. Coincidently, structure analysis indicated three (K = 3) and two (K = 2) subpopulations for SNP and DArT data, respectively, with accessions in each subpopulation sharing similar geographic origins and root color; and comparable clustering patterns were also found by principal component analysis. GWAS on 13 root and leaf phenotypic traits allowed the identification of 35 significant marker-trait associations for nine traits and, based on predicted functions of the genes in the genomic regions surrounding the significant markers, 25 candidate genes were identified for four root (fresh weight, width, length, and color) and three leaf traits (shape, blade color, and veins color). Conclusions: The present work unveiled conserved genetic diversity–evidenced both genetically (by SNP and silicoDArT markers) and phenotypically- exploitable in breeding programs and germplasm curation of sugar beet. Results from GWAS and candidate gene analyses provide a frame work for future studies aiming at deciphering the genetic basis underlying relevant traits for sugar beet and related crop types within Beta vulgaris subsp. vulgaris. EEA La Consulta Fil: Bahjat, Noor Maiwan. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía Fil: Yıldız, Mehtap. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía Fil: Nadeem, Muhammad Azhar. Mersin University. Faculty of Sciences. Department of Biotechnology; Turquía Fil: Nadeem, Muhammad Azhar. Sivas University of Science and Technology. Faculty of Agricultural Sciences and Technologies. Department of Field Crops; Turquía Fil: Morales Sanfurgo, Hugo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; Argentina Fil: Morales Sanfurgo, Hugo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza; Argentina Fil: Morales Sanfurgo, Hugo Andres. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina Fil: Morales Sanfurgo, Hugo Andres. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; Argentina Fil: Wohlfeiler, Josefina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; Argentina Fil: Wohlfeiler, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Baloch, Faheem Shehzad. Mersin University. Faculty of Sciences. Department of Biotechnology; Turquía Fil: Baloch, Faheem Shehzad. Jeju National University. Department of Plant Resources and Environment; República de Corea Fil: Tunçtürk, Murat. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Field Crops; Turquía Fil: Koçak, Metin. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía Fil: Yong, Suk Chung. Jeju National University. Department of Plant Resources and Environment; República de Corea Fil: Grzebelus, Dariusz. University of Agriculture in Krakow. Faculty of Biotechnology and Horticulture. Department of Plant Biology and Biotechnology; Polonia Fil: Sadık, Gökhan. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía Fil: Kuzğun, Cansu. Van Yuzuncu Yil University. Faculty of Agriculture. Department of Agricultural Biotechnology; Turquía Fil: Cavagnaro, Pablo Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina Fil: Cavagnaro, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cavagnaro, Pablo Federico. University of Agriculture in Krakow. Faculty of Biotechnology and Horticulture. Department of Plant Biology, and Biotechnology; Polonia |
description |
Background: Knowledge about the degree of genetic diversity and population structure is crucial as it facilitates novel variations that can be used in breeding programs. Similarly, genome-wide association studies (GWAS) can reveal candidate genes controlling traits of interest. Sugar beet is a major industrial crops worldwide, generating 20% of the world’s total sugar production. In this work, using genotyping by sequencing (GBS)-derived SNP and silicoDArT markers, we present new insights into the genetic structure and level of genetic diversity in an international sugar beet germplasm (94 accessions from 16 countries). We also performed GWAS to identify candidate genes for agriculturally-relevant traits. Results: After applying various filtering criteria, a total of 4,609 high-quality non-redundant SNPs and 6,950 silicoDArT markers were used for genetic analyses. Calculation of various diversity indices using the SNP (e.g., mean gene diversity: 0.31, MAF: 0.22) and silicoDArT (mean gene diversity: 0.21, MAF: 0.12) data sets revealed the existence of a good level of conserved genetic diversity. Cluster analysis by UPGMA revealed three and two distinct clusters for SNP and DArT data, respectively, with accessions being grouped in general agreement with their geographical origins and their tap root color. Coincidently, structure analysis indicated three (K = 3) and two (K = 2) subpopulations for SNP and DArT data, respectively, with accessions in each subpopulation sharing similar geographic origins and root color; and comparable clustering patterns were also found by principal component analysis. GWAS on 13 root and leaf phenotypic traits allowed the identification of 35 significant marker-trait associations for nine traits and, based on predicted functions of the genes in the genomic regions surrounding the significant markers, 25 candidate genes were identified for four root (fresh weight, width, length, and color) and three leaf traits (shape, blade color, and veins color). Conclusions: The present work unveiled conserved genetic diversity–evidenced both genetically (by SNP and silicoDArT markers) and phenotypically- exploitable in breeding programs and germplasm curation of sugar beet. Results from GWAS and candidate gene analyses provide a frame work for future studies aiming at deciphering the genetic basis underlying relevant traits for sugar beet and related crop types within Beta vulgaris subsp. vulgaris. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-09-15T13:10:59Z 2025-09-15T13:10:59Z 2025-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/23808 https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-025-06525-7 1471-2229 https://doi.org/10.1186/s12870-025-06525-7 |
url |
http://hdl.handle.net/20.500.12123/23808 https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-025-06525-7 https://doi.org/10.1186/s12870-025-06525-7 |
identifier_str_mv |
1471-2229 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
BMC |
publisher.none.fl_str_mv |
BMC |
dc.source.none.fl_str_mv |
BMC Plant Biology 25 : Article number: 523. (2025) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619209433153536 |
score |
12.559606 |