Peach (Prunus Persica) Fruit Response to Anoxia: Reversible Ripening Delay and Biochemical Changes
- Autores
- Lara, María Valeria; Budde, Claudio Olaf; Porrini, Lucía; Borsani, Julia; Murray, Ricardo Ernesto; Andreo, Carlos Santiago; Drincovich, María Fabiana
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The use of modified atmospheres has been successfully applied in different fruits to delay the ripening process and to prevent physiological disorders. In addition, during normal ripening, hypoxic areas are generated inside the fruit; moreover, anaerobic conditions may also arise during fruit post-harvest storage and handling. In consequence, the fruit is an interesting model to analyze the metabolic modifications due to changes in oxygen levels. In this work, a 72 h anoxic treatment by using an N2 storage atmosphere was applied to peaches (Prunus persica L. Batsch) after harvest. Ripening was effectively delayed in treated fruits, preventing fruit softening, color changes and ethylene production. Metabolic changes induced by anoxia included induction of fermentative pathways, glycolysis and enzymes involved in both sucrose synthesis and degradation. Sucrose, fructose and glucose contents remained unchanged in treated fruit, probably due to sucrose cycling. Sorbitol was not consumed and citrate was increased, correlating with citric acid cycle impairment due to O2 deprivation. Malate content was not affected, indicating compensation in the reactions producing and consuming malate. Changes in malic enzymes and pyruvate orthophosphate dikinase may provide pyruvate for fermentation or even act to regenerate NADP. After fruit transfer to aerobic conditions, no signs of post-anoxia injury were observed and metabolic changes were reversed, with the exception of acetaldehyde levels. The results obtained indicate that peach fruit is an organ with a high capacity for anoxic tolerance, which is in accord with the presence of hypoxic areas inside fruits and the fact that hypoxic pre-treatment improves tolerance to subsequent anoxia.
EEA San Pedro
Fil: Lara, María Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina
Fil: Budde, Claudio Olaf. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina
Fil: Porrini, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina
Fil: Bosani, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina
Fil: Murray, Ricardo Ernesto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina
Fil: Andreo, Carlos Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina
Fil: Drincovich, María Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina - Fuente
- Plant and Cell Physiology 52 (2) : 392–403 (February 2011)
- Materia
-
Durazno
Prunus Persica
Anoxia
Maduramiento
Enzimas
Peaches
Ripening
Enzymes
Deficiencia de Oxígeno - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/6476
Ver los metadatos del registro completo
id |
INTADig_93c820d152e65a992c8e53dc0f9cd916 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/6476 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Peach (Prunus Persica) Fruit Response to Anoxia: Reversible Ripening Delay and Biochemical ChangesLara, María ValeriaBudde, Claudio OlafPorrini, LucíaBorsani, JuliaMurray, Ricardo ErnestoAndreo, Carlos SantiagoDrincovich, María FabianaDuraznoPrunus PersicaAnoxiaMaduramientoEnzimasPeachesRipeningEnzymesDeficiencia de OxígenoThe use of modified atmospheres has been successfully applied in different fruits to delay the ripening process and to prevent physiological disorders. In addition, during normal ripening, hypoxic areas are generated inside the fruit; moreover, anaerobic conditions may also arise during fruit post-harvest storage and handling. In consequence, the fruit is an interesting model to analyze the metabolic modifications due to changes in oxygen levels. In this work, a 72 h anoxic treatment by using an N2 storage atmosphere was applied to peaches (Prunus persica L. Batsch) after harvest. Ripening was effectively delayed in treated fruits, preventing fruit softening, color changes and ethylene production. Metabolic changes induced by anoxia included induction of fermentative pathways, glycolysis and enzymes involved in both sucrose synthesis and degradation. Sucrose, fructose and glucose contents remained unchanged in treated fruit, probably due to sucrose cycling. Sorbitol was not consumed and citrate was increased, correlating with citric acid cycle impairment due to O2 deprivation. Malate content was not affected, indicating compensation in the reactions producing and consuming malate. Changes in malic enzymes and pyruvate orthophosphate dikinase may provide pyruvate for fermentation or even act to regenerate NADP. After fruit transfer to aerobic conditions, no signs of post-anoxia injury were observed and metabolic changes were reversed, with the exception of acetaldehyde levels. The results obtained indicate that peach fruit is an organ with a high capacity for anoxic tolerance, which is in accord with the presence of hypoxic areas inside fruits and the fact that hypoxic pre-treatment improves tolerance to subsequent anoxia.EEA San PedroFil: Lara, María Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Budde, Claudio Olaf. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Porrini, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Bosani, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Murray, Ricardo Ernesto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Andreo, Carlos Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Drincovich, María Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaOxford Academic Press2019-12-09T15:35:07Z2019-12-09T15:35:07Z2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://academic.oup.com/pcp/article/52/2/392/1906254http://hdl.handle.net/20.500.12123/64760032-07811471-9053https://doi.org/10.1093/pcp/pcq200Plant and Cell Physiology 52 (2) : 392–403 (February 2011)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:44:50Zoai:localhost:20.500.12123/6476instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:50.865INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Peach (Prunus Persica) Fruit Response to Anoxia: Reversible Ripening Delay and Biochemical Changes |
title |
Peach (Prunus Persica) Fruit Response to Anoxia: Reversible Ripening Delay and Biochemical Changes |
spellingShingle |
Peach (Prunus Persica) Fruit Response to Anoxia: Reversible Ripening Delay and Biochemical Changes Lara, María Valeria Durazno Prunus Persica Anoxia Maduramiento Enzimas Peaches Ripening Enzymes Deficiencia de Oxígeno |
title_short |
Peach (Prunus Persica) Fruit Response to Anoxia: Reversible Ripening Delay and Biochemical Changes |
title_full |
Peach (Prunus Persica) Fruit Response to Anoxia: Reversible Ripening Delay and Biochemical Changes |
title_fullStr |
Peach (Prunus Persica) Fruit Response to Anoxia: Reversible Ripening Delay and Biochemical Changes |
title_full_unstemmed |
Peach (Prunus Persica) Fruit Response to Anoxia: Reversible Ripening Delay and Biochemical Changes |
title_sort |
Peach (Prunus Persica) Fruit Response to Anoxia: Reversible Ripening Delay and Biochemical Changes |
dc.creator.none.fl_str_mv |
Lara, María Valeria Budde, Claudio Olaf Porrini, Lucía Borsani, Julia Murray, Ricardo Ernesto Andreo, Carlos Santiago Drincovich, María Fabiana |
author |
Lara, María Valeria |
author_facet |
Lara, María Valeria Budde, Claudio Olaf Porrini, Lucía Borsani, Julia Murray, Ricardo Ernesto Andreo, Carlos Santiago Drincovich, María Fabiana |
author_role |
author |
author2 |
Budde, Claudio Olaf Porrini, Lucía Borsani, Julia Murray, Ricardo Ernesto Andreo, Carlos Santiago Drincovich, María Fabiana |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Durazno Prunus Persica Anoxia Maduramiento Enzimas Peaches Ripening Enzymes Deficiencia de Oxígeno |
topic |
Durazno Prunus Persica Anoxia Maduramiento Enzimas Peaches Ripening Enzymes Deficiencia de Oxígeno |
dc.description.none.fl_txt_mv |
The use of modified atmospheres has been successfully applied in different fruits to delay the ripening process and to prevent physiological disorders. In addition, during normal ripening, hypoxic areas are generated inside the fruit; moreover, anaerobic conditions may also arise during fruit post-harvest storage and handling. In consequence, the fruit is an interesting model to analyze the metabolic modifications due to changes in oxygen levels. In this work, a 72 h anoxic treatment by using an N2 storage atmosphere was applied to peaches (Prunus persica L. Batsch) after harvest. Ripening was effectively delayed in treated fruits, preventing fruit softening, color changes and ethylene production. Metabolic changes induced by anoxia included induction of fermentative pathways, glycolysis and enzymes involved in both sucrose synthesis and degradation. Sucrose, fructose and glucose contents remained unchanged in treated fruit, probably due to sucrose cycling. Sorbitol was not consumed and citrate was increased, correlating with citric acid cycle impairment due to O2 deprivation. Malate content was not affected, indicating compensation in the reactions producing and consuming malate. Changes in malic enzymes and pyruvate orthophosphate dikinase may provide pyruvate for fermentation or even act to regenerate NADP. After fruit transfer to aerobic conditions, no signs of post-anoxia injury were observed and metabolic changes were reversed, with the exception of acetaldehyde levels. The results obtained indicate that peach fruit is an organ with a high capacity for anoxic tolerance, which is in accord with the presence of hypoxic areas inside fruits and the fact that hypoxic pre-treatment improves tolerance to subsequent anoxia. EEA San Pedro Fil: Lara, María Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina Fil: Budde, Claudio Olaf. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Porrini, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina Fil: Bosani, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina Fil: Murray, Ricardo Ernesto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Andreo, Carlos Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina Fil: Drincovich, María Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina |
description |
The use of modified atmospheres has been successfully applied in different fruits to delay the ripening process and to prevent physiological disorders. In addition, during normal ripening, hypoxic areas are generated inside the fruit; moreover, anaerobic conditions may also arise during fruit post-harvest storage and handling. In consequence, the fruit is an interesting model to analyze the metabolic modifications due to changes in oxygen levels. In this work, a 72 h anoxic treatment by using an N2 storage atmosphere was applied to peaches (Prunus persica L. Batsch) after harvest. Ripening was effectively delayed in treated fruits, preventing fruit softening, color changes and ethylene production. Metabolic changes induced by anoxia included induction of fermentative pathways, glycolysis and enzymes involved in both sucrose synthesis and degradation. Sucrose, fructose and glucose contents remained unchanged in treated fruit, probably due to sucrose cycling. Sorbitol was not consumed and citrate was increased, correlating with citric acid cycle impairment due to O2 deprivation. Malate content was not affected, indicating compensation in the reactions producing and consuming malate. Changes in malic enzymes and pyruvate orthophosphate dikinase may provide pyruvate for fermentation or even act to regenerate NADP. After fruit transfer to aerobic conditions, no signs of post-anoxia injury were observed and metabolic changes were reversed, with the exception of acetaldehyde levels. The results obtained indicate that peach fruit is an organ with a high capacity for anoxic tolerance, which is in accord with the presence of hypoxic areas inside fruits and the fact that hypoxic pre-treatment improves tolerance to subsequent anoxia. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-02 2019-12-09T15:35:07Z 2019-12-09T15:35:07Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://academic.oup.com/pcp/article/52/2/392/1906254 http://hdl.handle.net/20.500.12123/6476 0032-0781 1471-9053 https://doi.org/10.1093/pcp/pcq200 |
url |
https://academic.oup.com/pcp/article/52/2/392/1906254 http://hdl.handle.net/20.500.12123/6476 https://doi.org/10.1093/pcp/pcq200 |
identifier_str_mv |
0032-0781 1471-9053 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Oxford Academic Press |
publisher.none.fl_str_mv |
Oxford Academic Press |
dc.source.none.fl_str_mv |
Plant and Cell Physiology 52 (2) : 392–403 (February 2011) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619140446289920 |
score |
12.559606 |