Dwarfing mechanisms of Prunus species as interstems and rootstocks on peach [Prunus persica (L.) Batsch] tree vegetative growth and physiology
- Autores
- Weibel, Antonio Marcelo
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Reighard, Gregory L.
- Descripción
- Tesis para obtener el grado de Doctor of Philosophy Plant and Environmental Sciences, de Clemson University, diciembre 2008
The use of small trees in orchard systems reduces manual labor (pruning, thinning and harvesting), and induces precocity, thus making high-density plantations economically advantageous, which has elicited an interest in size-controlling rootstocks. However, the mechanisms involved in the reduction of scion growth by the rootstock are not well understood. The main objective of this study was to gain a better understanding of the dwarfing mechanism induced by size-controlling peach rootstocks. The relationship among different rootstocks (dwarfing to invigorating range) as to stored carbohydrates, tree water status, and interstem and grafting height was evaluated on young and mature `Redhaven' and `Redtop' peach trees in California, Georgia and South Carolina. The main rootstocks involved in the study were Cadaman® (vigorous), Lovell (control), Pumiselect® (semivigorous), Controller® 5 (semivigorous), and Krymsk® 1 (more size-controlling). Greater concentrations of TNC were found in `Redhaven' and `Redtop' roots in California compared to the other two sites; however, shoot TNC did not differ significantly among sites. Concentration of TNC in roots were at least two fold compared to shoot TNC concentration. About 70% of total non-structural carbohydrates were accumulated in root tissues, where smaller roots accounted for most of the carbohydrates (>80%). The more vigorous rootstocks not only had the higher accumulation of dormant carbohydrates but also the highest root and shoot dry weight per tree, suggesting that the initial difference in new spring growth could be the result of these growth components. Rootstock genotypes used as interstems and not the grafting height affected the size of `Redhaven' trees in the studied combinations. Krymsk® 1 and Pumiselect® interstem trees were 81% and 88%, respectively, the size of Lovell trees at the end of the first year, while Krymsk® 1 interstem trees were almost 50% of the control at the end of second year. Budding height did not affected significanltly scion growth, however a tendency was observed when trees on Krymsk® 1 had reduced growth when grafted at higher height. These data suggest the dwarfing mechanism in some Prunus rootstocks involves other plant tissues rather than roots. There was a positive correlation between scion vegetative growth as affected by rootstock and tree water status. In addition, the results suggested that the seasonal changes in dry matter production and partitioning found in two peach cultivars may be influenced, at least in part, by seasonal variations in stem water potential, stomatal conductance and transpiration rates. Xylem vessel diameters of Lovell rootstocks were two fold greater than those of Krymsk® 1 rootstocks. The results also suggested that in peach rootstocks the main hydraulic resistance might be located at the root such as the case of Krymsk® 1 or graft union interface as in Pumiselect®; so, depending on genotype combinations.
EEA Junín
Fil: Weibel, Antonio Marcelo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Junín; Argentina - Materia
-
Durazno
Prunus Persica
Stems
Portainjertos
Portainjertos Enanizantes
Crecimiento
Fisiología Vegetal
Peaches
Tallos
Rootstocks
Dwarfing Rootstocks
Growth
Plant Physiology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/6867
Ver los metadatos del registro completo
id |
INTADig_223fdfd3a5481c55db4b353fb46c757d |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/6867 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Dwarfing mechanisms of Prunus species as interstems and rootstocks on peach [Prunus persica (L.) Batsch] tree vegetative growth and physiologyWeibel, Antonio MarceloDuraznoPrunus PersicaStemsPortainjertosPortainjertos EnanizantesCrecimientoFisiología VegetalPeachesTallosRootstocksDwarfing RootstocksGrowthPlant PhysiologyTesis para obtener el grado de Doctor of Philosophy Plant and Environmental Sciences, de Clemson University, diciembre 2008The use of small trees in orchard systems reduces manual labor (pruning, thinning and harvesting), and induces precocity, thus making high-density plantations economically advantageous, which has elicited an interest in size-controlling rootstocks. However, the mechanisms involved in the reduction of scion growth by the rootstock are not well understood. The main objective of this study was to gain a better understanding of the dwarfing mechanism induced by size-controlling peach rootstocks. The relationship among different rootstocks (dwarfing to invigorating range) as to stored carbohydrates, tree water status, and interstem and grafting height was evaluated on young and mature `Redhaven' and `Redtop' peach trees in California, Georgia and South Carolina. The main rootstocks involved in the study were Cadaman® (vigorous), Lovell (control), Pumiselect® (semivigorous), Controller® 5 (semivigorous), and Krymsk® 1 (more size-controlling). Greater concentrations of TNC were found in `Redhaven' and `Redtop' roots in California compared to the other two sites; however, shoot TNC did not differ significantly among sites. Concentration of TNC in roots were at least two fold compared to shoot TNC concentration. About 70% of total non-structural carbohydrates were accumulated in root tissues, where smaller roots accounted for most of the carbohydrates (>80%). The more vigorous rootstocks not only had the higher accumulation of dormant carbohydrates but also the highest root and shoot dry weight per tree, suggesting that the initial difference in new spring growth could be the result of these growth components. Rootstock genotypes used as interstems and not the grafting height affected the size of `Redhaven' trees in the studied combinations. Krymsk® 1 and Pumiselect® interstem trees were 81% and 88%, respectively, the size of Lovell trees at the end of the first year, while Krymsk® 1 interstem trees were almost 50% of the control at the end of second year. Budding height did not affected significanltly scion growth, however a tendency was observed when trees on Krymsk® 1 had reduced growth when grafted at higher height. These data suggest the dwarfing mechanism in some Prunus rootstocks involves other plant tissues rather than roots. There was a positive correlation between scion vegetative growth as affected by rootstock and tree water status. In addition, the results suggested that the seasonal changes in dry matter production and partitioning found in two peach cultivars may be influenced, at least in part, by seasonal variations in stem water potential, stomatal conductance and transpiration rates. Xylem vessel diameters of Lovell rootstocks were two fold greater than those of Krymsk® 1 rootstocks. The results also suggested that in peach rootstocks the main hydraulic resistance might be located at the root such as the case of Krymsk® 1 or graft union interface as in Pumiselect®; so, depending on genotype combinations.EEA JunínFil: Weibel, Antonio Marcelo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Junín; ArgentinaClemson UniversityReighard, Gregory L.2020-03-02T12:40:10Z2020-03-02T12:40:10Z2008-12info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://hdl.handle.net/20.500.12123/6867https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=1301&context=all_dissertationsenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuaria2025-09-29T13:44:53Zoai:localhost:20.500.12123/6867instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:53.903INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Dwarfing mechanisms of Prunus species as interstems and rootstocks on peach [Prunus persica (L.) Batsch] tree vegetative growth and physiology |
title |
Dwarfing mechanisms of Prunus species as interstems and rootstocks on peach [Prunus persica (L.) Batsch] tree vegetative growth and physiology |
spellingShingle |
Dwarfing mechanisms of Prunus species as interstems and rootstocks on peach [Prunus persica (L.) Batsch] tree vegetative growth and physiology Weibel, Antonio Marcelo Durazno Prunus Persica Stems Portainjertos Portainjertos Enanizantes Crecimiento Fisiología Vegetal Peaches Tallos Rootstocks Dwarfing Rootstocks Growth Plant Physiology |
title_short |
Dwarfing mechanisms of Prunus species as interstems and rootstocks on peach [Prunus persica (L.) Batsch] tree vegetative growth and physiology |
title_full |
Dwarfing mechanisms of Prunus species as interstems and rootstocks on peach [Prunus persica (L.) Batsch] tree vegetative growth and physiology |
title_fullStr |
Dwarfing mechanisms of Prunus species as interstems and rootstocks on peach [Prunus persica (L.) Batsch] tree vegetative growth and physiology |
title_full_unstemmed |
Dwarfing mechanisms of Prunus species as interstems and rootstocks on peach [Prunus persica (L.) Batsch] tree vegetative growth and physiology |
title_sort |
Dwarfing mechanisms of Prunus species as interstems and rootstocks on peach [Prunus persica (L.) Batsch] tree vegetative growth and physiology |
dc.creator.none.fl_str_mv |
Weibel, Antonio Marcelo |
author |
Weibel, Antonio Marcelo |
author_facet |
Weibel, Antonio Marcelo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Reighard, Gregory L. |
dc.subject.none.fl_str_mv |
Durazno Prunus Persica Stems Portainjertos Portainjertos Enanizantes Crecimiento Fisiología Vegetal Peaches Tallos Rootstocks Dwarfing Rootstocks Growth Plant Physiology |
topic |
Durazno Prunus Persica Stems Portainjertos Portainjertos Enanizantes Crecimiento Fisiología Vegetal Peaches Tallos Rootstocks Dwarfing Rootstocks Growth Plant Physiology |
dc.description.none.fl_txt_mv |
Tesis para obtener el grado de Doctor of Philosophy Plant and Environmental Sciences, de Clemson University, diciembre 2008 The use of small trees in orchard systems reduces manual labor (pruning, thinning and harvesting), and induces precocity, thus making high-density plantations economically advantageous, which has elicited an interest in size-controlling rootstocks. However, the mechanisms involved in the reduction of scion growth by the rootstock are not well understood. The main objective of this study was to gain a better understanding of the dwarfing mechanism induced by size-controlling peach rootstocks. The relationship among different rootstocks (dwarfing to invigorating range) as to stored carbohydrates, tree water status, and interstem and grafting height was evaluated on young and mature `Redhaven' and `Redtop' peach trees in California, Georgia and South Carolina. The main rootstocks involved in the study were Cadaman® (vigorous), Lovell (control), Pumiselect® (semivigorous), Controller® 5 (semivigorous), and Krymsk® 1 (more size-controlling). Greater concentrations of TNC were found in `Redhaven' and `Redtop' roots in California compared to the other two sites; however, shoot TNC did not differ significantly among sites. Concentration of TNC in roots were at least two fold compared to shoot TNC concentration. About 70% of total non-structural carbohydrates were accumulated in root tissues, where smaller roots accounted for most of the carbohydrates (>80%). The more vigorous rootstocks not only had the higher accumulation of dormant carbohydrates but also the highest root and shoot dry weight per tree, suggesting that the initial difference in new spring growth could be the result of these growth components. Rootstock genotypes used as interstems and not the grafting height affected the size of `Redhaven' trees in the studied combinations. Krymsk® 1 and Pumiselect® interstem trees were 81% and 88%, respectively, the size of Lovell trees at the end of the first year, while Krymsk® 1 interstem trees were almost 50% of the control at the end of second year. Budding height did not affected significanltly scion growth, however a tendency was observed when trees on Krymsk® 1 had reduced growth when grafted at higher height. These data suggest the dwarfing mechanism in some Prunus rootstocks involves other plant tissues rather than roots. There was a positive correlation between scion vegetative growth as affected by rootstock and tree water status. In addition, the results suggested that the seasonal changes in dry matter production and partitioning found in two peach cultivars may be influenced, at least in part, by seasonal variations in stem water potential, stomatal conductance and transpiration rates. Xylem vessel diameters of Lovell rootstocks were two fold greater than those of Krymsk® 1 rootstocks. The results also suggested that in peach rootstocks the main hydraulic resistance might be located at the root such as the case of Krymsk® 1 or graft union interface as in Pumiselect®; so, depending on genotype combinations. EEA Junín Fil: Weibel, Antonio Marcelo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Junín; Argentina |
description |
Tesis para obtener el grado de Doctor of Philosophy Plant and Environmental Sciences, de Clemson University, diciembre 2008 |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 2020-03-02T12:40:10Z 2020-03-02T12:40:10Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/6867 https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=1301&context=all_dissertations |
url |
http://hdl.handle.net/20.500.12123/6867 https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=1301&context=all_dissertations |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Clemson University |
publisher.none.fl_str_mv |
Clemson University |
dc.source.none.fl_str_mv |
reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619142363086848 |
score |
12.559606 |