Spatial and Spectral features for Horticulture mapping
- Autores
- Marinelli, María Victoria; Mari, Nicolás Alejandro; Pons, Diego Hernan; Giobellina, Beatriz Liliana; Scavuzzo, Carlos Marcelo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Remote sensing data allows the continuous mapping of horticultural crops in periurban areas. These are very important for their functions in the provision of local food and for other ecosystem services they provide. This work presents a methodological development and the results of a hierarchical classification of the horticultural periurban area of Cordoba city, based on the spectral and spatial properties of satellite imagery. The methodology present is automatable, making it suitable for continuous monitoring. The classification obtained with the RF algorithm yields a global kappa of 0.77 and in particular for the horticultural class a precision of 0.82. With a hierarchical classification only of the horticultural area result in an amount of 1860 ha. With spectral information taken in radiometer fields campaigns evaluated by spectral angle mapper, we can observe as using Sentinel 2 spectra and parrot camera produce better separability of horticultural crops that the hyperspectral one.
EEA Manfredi
Fil: Marinelli, María Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Córdoba; Argentina
Fil: Marinelli, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marinelli, María Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Observatorio de Agricultura Urbana, Periurbana y Agroecología (O-AUPA); Argentina
Fil: Mari, Nicolás Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Cruz del Eje; Argentina
Fil: Mari, Nicolás Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Observatorio de Agricultura Urbana, Periurbana y Agroecología (O-AUPA); Argentina
Fil: Pons, Diego Hernan. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; Argentina
Fil: Giobellina, Beatriz Liliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Córdoba; Argentina
Fil: Giobellina, Beatriz Liliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Observatorio de Agricultura Urbana, Periurbana y Agroecología (O-AUPA); Argentina
Fil: Scavuzzo, Carlos Marcelo. Universidad Nacional de Córdoba. Instituto de Estudios Espaciales Avanzados Mario Gulich (IG). Comisión Nacional de Actividades Espaciales (CONAE); Argentina - Fuente
- Proceedings of BigDSSAgro 2019. III International Conference on Agro BigData and Decision Support Systems in Agriculture. 25-27 September 2019, Valparaíso, Chile. p. 37-40
- Materia
-
Áreas Periurbanas
Cultivo de Hortalizas
Alimentación Humana
Periurban Areas
Vegetable Growing
Human Feeding - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/19388
Ver los metadatos del registro completo
id |
INTADig_8cc62ad5cb2391ef3be141651a692190 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/19388 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Spatial and Spectral features for Horticulture mappingMarinelli, María VictoriaMari, Nicolás AlejandroPons, Diego HernanGiobellina, Beatriz LilianaScavuzzo, Carlos MarceloÁreas PeriurbanasCultivo de HortalizasAlimentación HumanaPeriurban AreasVegetable GrowingHuman FeedingRemote sensing data allows the continuous mapping of horticultural crops in periurban areas. These are very important for their functions in the provision of local food and for other ecosystem services they provide. This work presents a methodological development and the results of a hierarchical classification of the horticultural periurban area of Cordoba city, based on the spectral and spatial properties of satellite imagery. The methodology present is automatable, making it suitable for continuous monitoring. The classification obtained with the RF algorithm yields a global kappa of 0.77 and in particular for the horticultural class a precision of 0.82. With a hierarchical classification only of the horticultural area result in an amount of 1860 ha. With spectral information taken in radiometer fields campaigns evaluated by spectral angle mapper, we can observe as using Sentinel 2 spectra and parrot camera produce better separability of horticultural crops that the hyperspectral one.EEA ManfrediFil: Marinelli, María Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Córdoba; ArgentinaFil: Marinelli, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marinelli, María Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Observatorio de Agricultura Urbana, Periurbana y Agroecología (O-AUPA); ArgentinaFil: Mari, Nicolás Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Cruz del Eje; ArgentinaFil: Mari, Nicolás Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Observatorio de Agricultura Urbana, Periurbana y Agroecología (O-AUPA); ArgentinaFil: Pons, Diego Hernan. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; ArgentinaFil: Giobellina, Beatriz Liliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Córdoba; ArgentinaFil: Giobellina, Beatriz Liliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Observatorio de Agricultura Urbana, Periurbana y Agroecología (O-AUPA); ArgentinaFil: Scavuzzo, Carlos Marcelo. Universidad Nacional de Córdoba. Instituto de Estudios Espaciales Avanzados Mario Gulich (IG). Comisión Nacional de Actividades Espaciales (CONAE); ArgentinaUniversidad Técnica Federico Santa María, Chile2024-09-13T13:04:31Z2024-09-13T13:04:31Z2019-09-25info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/20.500.12123/19388978-956-356-095-4 (Online)Proceedings of BigDSSAgro 2019. III International Conference on Agro BigData and Decision Support Systems in Agriculture. 25-27 September 2019, Valparaíso, Chile. p. 37-40reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-11T10:25:16Zoai:localhost:20.500.12123/19388instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-11 10:25:16.959INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Spatial and Spectral features for Horticulture mapping |
title |
Spatial and Spectral features for Horticulture mapping |
spellingShingle |
Spatial and Spectral features for Horticulture mapping Marinelli, María Victoria Áreas Periurbanas Cultivo de Hortalizas Alimentación Humana Periurban Areas Vegetable Growing Human Feeding |
title_short |
Spatial and Spectral features for Horticulture mapping |
title_full |
Spatial and Spectral features for Horticulture mapping |
title_fullStr |
Spatial and Spectral features for Horticulture mapping |
title_full_unstemmed |
Spatial and Spectral features for Horticulture mapping |
title_sort |
Spatial and Spectral features for Horticulture mapping |
dc.creator.none.fl_str_mv |
Marinelli, María Victoria Mari, Nicolás Alejandro Pons, Diego Hernan Giobellina, Beatriz Liliana Scavuzzo, Carlos Marcelo |
author |
Marinelli, María Victoria |
author_facet |
Marinelli, María Victoria Mari, Nicolás Alejandro Pons, Diego Hernan Giobellina, Beatriz Liliana Scavuzzo, Carlos Marcelo |
author_role |
author |
author2 |
Mari, Nicolás Alejandro Pons, Diego Hernan Giobellina, Beatriz Liliana Scavuzzo, Carlos Marcelo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Áreas Periurbanas Cultivo de Hortalizas Alimentación Humana Periurban Areas Vegetable Growing Human Feeding |
topic |
Áreas Periurbanas Cultivo de Hortalizas Alimentación Humana Periurban Areas Vegetable Growing Human Feeding |
dc.description.none.fl_txt_mv |
Remote sensing data allows the continuous mapping of horticultural crops in periurban areas. These are very important for their functions in the provision of local food and for other ecosystem services they provide. This work presents a methodological development and the results of a hierarchical classification of the horticultural periurban area of Cordoba city, based on the spectral and spatial properties of satellite imagery. The methodology present is automatable, making it suitable for continuous monitoring. The classification obtained with the RF algorithm yields a global kappa of 0.77 and in particular for the horticultural class a precision of 0.82. With a hierarchical classification only of the horticultural area result in an amount of 1860 ha. With spectral information taken in radiometer fields campaigns evaluated by spectral angle mapper, we can observe as using Sentinel 2 spectra and parrot camera produce better separability of horticultural crops that the hyperspectral one. EEA Manfredi Fil: Marinelli, María Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Córdoba; Argentina Fil: Marinelli, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Marinelli, María Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Observatorio de Agricultura Urbana, Periurbana y Agroecología (O-AUPA); Argentina Fil: Mari, Nicolás Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Cruz del Eje; Argentina Fil: Mari, Nicolás Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Observatorio de Agricultura Urbana, Periurbana y Agroecología (O-AUPA); Argentina Fil: Pons, Diego Hernan. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; Argentina Fil: Giobellina, Beatriz Liliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Córdoba; Argentina Fil: Giobellina, Beatriz Liliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Observatorio de Agricultura Urbana, Periurbana y Agroecología (O-AUPA); Argentina Fil: Scavuzzo, Carlos Marcelo. Universidad Nacional de Córdoba. Instituto de Estudios Espaciales Avanzados Mario Gulich (IG). Comisión Nacional de Actividades Espaciales (CONAE); Argentina |
description |
Remote sensing data allows the continuous mapping of horticultural crops in periurban areas. These are very important for their functions in the provision of local food and for other ecosystem services they provide. This work presents a methodological development and the results of a hierarchical classification of the horticultural periurban area of Cordoba city, based on the spectral and spatial properties of satellite imagery. The methodology present is automatable, making it suitable for continuous monitoring. The classification obtained with the RF algorithm yields a global kappa of 0.77 and in particular for the horticultural class a precision of 0.82. With a hierarchical classification only of the horticultural area result in an amount of 1860 ha. With spectral information taken in radiometer fields campaigns evaluated by spectral angle mapper, we can observe as using Sentinel 2 spectra and parrot camera produce better separability of horticultural crops that the hyperspectral one. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09-25 2024-09-13T13:04:31Z 2024-09-13T13:04:31Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/19388 978-956-356-095-4 (Online) |
url |
http://hdl.handle.net/20.500.12123/19388 |
identifier_str_mv |
978-956-356-095-4 (Online) |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Técnica Federico Santa María, Chile |
publisher.none.fl_str_mv |
Universidad Técnica Federico Santa María, Chile |
dc.source.none.fl_str_mv |
Proceedings of BigDSSAgro 2019. III International Conference on Agro BigData and Decision Support Systems in Agriculture. 25-27 September 2019, Valparaíso, Chile. p. 37-40 reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842975532329730048 |
score |
12.993085 |