Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
- Autores
- Rossini, Luca; Bruzzone, Octavio Augusto; Speranza, Stefano; Delfino, Ines
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters, in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view.
EEA Bariloche
Fil: Rossini, Luca. Université Libre de Bruxelles. Service d'Automatique et d'Analyse des Systèmes; Bélgica
Fil: Rossini, Luca. Università degli Studi della Tuscia. Dipartimento di Scienze Agrarie e Forestali; Italia
Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Speranza, Stefano. Università degli Studi della Tuscia. Dipartimento di Scienze Agrarie e Forestali; Italia
Fil: Delfino, Ines. Università degli Studi della Tuscia. Dipartimento di Scienze Ecologiche e Biologiche; Italia - Fuente
- Ecological Informatics 77 : 102232. (November 2023)
- Materia
-
Insecta
Dinámica de Poblaciones
Modelos
Genética
Algoritmos
Population Dynamics
Models
Genetics
Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/14849
Ver los metadatos del registro completo
| id |
INTADig_86ccc8acd1fdd117e2317f3112beeb18 |
|---|---|
| oai_identifier_str |
oai:localhost:20.500.12123/14849 |
| network_acronym_str |
INTADig |
| repository_id_str |
l |
| network_name_str |
INTA Digital (INTA) |
| spelling |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methodsRossini, LucaBruzzone, Octavio AugustoSperanza, StefanoDelfino, InesInsectaDinámica de PoblacionesModelosGenéticaAlgoritmosPopulation DynamicsModelsGeneticsAlgorithmsDecision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters, in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view.EEA BarilocheFil: Rossini, Luca. Université Libre de Bruxelles. Service d'Automatique et d'Analyse des Systèmes; BélgicaFil: Rossini, Luca. Università degli Studi della Tuscia. Dipartimento di Scienze Agrarie e Forestali; ItaliaFil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Speranza, Stefano. Università degli Studi della Tuscia. Dipartimento di Scienze Agrarie e Forestali; ItaliaFil: Delfino, Ines. Università degli Studi della Tuscia. Dipartimento di Scienze Ecologiche e Biologiche; ItaliaElsevier2023-08-01T17:11:59Z2023-08-01T17:11:59Z2023-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/14849https://www.sciencedirect.com/science/article/pii/S15749541230026131574-95411878-0512https://doi.org/10.1016/j.ecoinf.2023.102232Ecological Informatics 77 : 102232. (November 2023)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2026-01-08T10:39:06Zoai:localhost:20.500.12123/14849instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2026-01-08 10:39:06.341INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
| dc.title.none.fl_str_mv |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| title |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| spellingShingle |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods Rossini, Luca Insecta Dinámica de Poblaciones Modelos Genética Algoritmos Population Dynamics Models Genetics Algorithms |
| title_short |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| title_full |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| title_fullStr |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| title_full_unstemmed |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| title_sort |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| dc.creator.none.fl_str_mv |
Rossini, Luca Bruzzone, Octavio Augusto Speranza, Stefano Delfino, Ines |
| author |
Rossini, Luca |
| author_facet |
Rossini, Luca Bruzzone, Octavio Augusto Speranza, Stefano Delfino, Ines |
| author_role |
author |
| author2 |
Bruzzone, Octavio Augusto Speranza, Stefano Delfino, Ines |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Insecta Dinámica de Poblaciones Modelos Genética Algoritmos Population Dynamics Models Genetics Algorithms |
| topic |
Insecta Dinámica de Poblaciones Modelos Genética Algoritmos Population Dynamics Models Genetics Algorithms |
| dc.description.none.fl_txt_mv |
Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters, in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view. EEA Bariloche Fil: Rossini, Luca. Université Libre de Bruxelles. Service d'Automatique et d'Analyse des Systèmes; Bélgica Fil: Rossini, Luca. Università degli Studi della Tuscia. Dipartimento di Scienze Agrarie e Forestali; Italia Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Speranza, Stefano. Università degli Studi della Tuscia. Dipartimento di Scienze Agrarie e Forestali; Italia Fil: Delfino, Ines. Università degli Studi della Tuscia. Dipartimento di Scienze Ecologiche e Biologiche; Italia |
| description |
Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters, in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-08-01T17:11:59Z 2023-08-01T17:11:59Z 2023-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/14849 https://www.sciencedirect.com/science/article/pii/S1574954123002613 1574-9541 1878-0512 https://doi.org/10.1016/j.ecoinf.2023.102232 |
| url |
http://hdl.handle.net/20.500.12123/14849 https://www.sciencedirect.com/science/article/pii/S1574954123002613 https://doi.org/10.1016/j.ecoinf.2023.102232 |
| identifier_str_mv |
1574-9541 1878-0512 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
Ecological Informatics 77 : 102232. (November 2023) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
| reponame_str |
INTA Digital (INTA) |
| collection |
INTA Digital (INTA) |
| instname_str |
Instituto Nacional de Tecnología Agropecuaria |
| repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
| repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
| _version_ |
1853758482235260928 |
| score |
13.113929 |