Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods

Autores
Rossini, Luca; Bruzzone, Octavio Augusto; Speranza, Stefano; Delfino, Ines
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters , in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view.
Fil: Rossini, Luca. Università degli Studi della Tuscia; Italia
Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Speranza, Stefano. Università degli Studi della Tuscia; Italia
Fil: Delfino, Ines. Università degli Studi della Tuscia; Italia
Materia
Parameter estimation
Field monitoring
Least square method
Metropolis hasting algorithm
Insect pest populations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/232108

id CONICETDig_918e1cbd14271beeb3505242a315ec16
oai_identifier_str oai:ri.conicet.gov.ar:11336/232108
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methodsRossini, LucaBruzzone, Octavio AugustoSperanza, StefanoDelfino, InesParameter estimationField monitoringLeast square methodMetropolis hasting algorithmInsect pest populationshttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters , in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view.Fil: Rossini, Luca. Università degli Studi della Tuscia; ItaliaFil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Speranza, Stefano. Università degli Studi della Tuscia; ItaliaFil: Delfino, Ines. Università degli Studi della Tuscia; ItaliaElsevier Science2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232108Rossini, Luca; Bruzzone, Octavio Augusto; Speranza, Stefano; Delfino, Ines; Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods; Elsevier Science; Ecological Informatics; 77; 7-2023; 1-121574-9541CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1574954123002613info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecoinf.2023.102232info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T12:13:47Zoai:ri.conicet.gov.ar:11336/232108instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 12:13:48.208CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
title Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
spellingShingle Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
Rossini, Luca
Parameter estimation
Field monitoring
Least square method
Metropolis hasting algorithm
Insect pest populations
title_short Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
title_full Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
title_fullStr Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
title_full_unstemmed Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
title_sort Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
dc.creator.none.fl_str_mv Rossini, Luca
Bruzzone, Octavio Augusto
Speranza, Stefano
Delfino, Ines
author Rossini, Luca
author_facet Rossini, Luca
Bruzzone, Octavio Augusto
Speranza, Stefano
Delfino, Ines
author_role author
author2 Bruzzone, Octavio Augusto
Speranza, Stefano
Delfino, Ines
author2_role author
author
author
dc.subject.none.fl_str_mv Parameter estimation
Field monitoring
Least square method
Metropolis hasting algorithm
Insect pest populations
topic Parameter estimation
Field monitoring
Least square method
Metropolis hasting algorithm
Insect pest populations
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters , in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view.
Fil: Rossini, Luca. Università degli Studi della Tuscia; Italia
Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Speranza, Stefano. Università degli Studi della Tuscia; Italia
Fil: Delfino, Ines. Università degli Studi della Tuscia; Italia
description Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters , in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view.
publishDate 2023
dc.date.none.fl_str_mv 2023-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/232108
Rossini, Luca; Bruzzone, Octavio Augusto; Speranza, Stefano; Delfino, Ines; Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods; Elsevier Science; Ecological Informatics; 77; 7-2023; 1-12
1574-9541
CONICET Digital
CONICET
url http://hdl.handle.net/11336/232108
identifier_str_mv Rossini, Luca; Bruzzone, Octavio Augusto; Speranza, Stefano; Delfino, Ines; Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods; Elsevier Science; Ecological Informatics; 77; 7-2023; 1-12
1574-9541
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1574954123002613
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecoinf.2023.102232
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1854321544190230528
score 13.113929