Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
- Autores
- Rossini, Luca; Bruzzone, Octavio Augusto; Speranza, Stefano; Delfino, Ines
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters , in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view.
Fil: Rossini, Luca. Università degli Studi della Tuscia; Italia
Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Speranza, Stefano. Università degli Studi della Tuscia; Italia
Fil: Delfino, Ines. Università degli Studi della Tuscia; Italia - Materia
-
Parameter estimation
Field monitoring
Least square method
Metropolis hasting algorithm
Insect pest populations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/232108
Ver los metadatos del registro completo
| id |
CONICETDig_918e1cbd14271beeb3505242a315ec16 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/232108 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methodsRossini, LucaBruzzone, Octavio AugustoSperanza, StefanoDelfino, InesParameter estimationField monitoringLeast square methodMetropolis hasting algorithmInsect pest populationshttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters , in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view.Fil: Rossini, Luca. Università degli Studi della Tuscia; ItaliaFil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Speranza, Stefano. Università degli Studi della Tuscia; ItaliaFil: Delfino, Ines. Università degli Studi della Tuscia; ItaliaElsevier Science2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232108Rossini, Luca; Bruzzone, Octavio Augusto; Speranza, Stefano; Delfino, Ines; Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods; Elsevier Science; Ecological Informatics; 77; 7-2023; 1-121574-9541CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1574954123002613info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecoinf.2023.102232info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T12:13:47Zoai:ri.conicet.gov.ar:11336/232108instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 12:13:48.208CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| title |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| spellingShingle |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods Rossini, Luca Parameter estimation Field monitoring Least square method Metropolis hasting algorithm Insect pest populations |
| title_short |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| title_full |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| title_fullStr |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| title_full_unstemmed |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| title_sort |
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods |
| dc.creator.none.fl_str_mv |
Rossini, Luca Bruzzone, Octavio Augusto Speranza, Stefano Delfino, Ines |
| author |
Rossini, Luca |
| author_facet |
Rossini, Luca Bruzzone, Octavio Augusto Speranza, Stefano Delfino, Ines |
| author_role |
author |
| author2 |
Bruzzone, Octavio Augusto Speranza, Stefano Delfino, Ines |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Parameter estimation Field monitoring Least square method Metropolis hasting algorithm Insect pest populations |
| topic |
Parameter estimation Field monitoring Least square method Metropolis hasting algorithm Insect pest populations |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
| dc.description.none.fl_txt_mv |
Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters , in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view. Fil: Rossini, Luca. Università degli Studi della Tuscia; Italia Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Speranza, Stefano. Università degli Studi della Tuscia; Italia Fil: Delfino, Ines. Università degli Studi della Tuscia; Italia |
| description |
Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters , in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/232108 Rossini, Luca; Bruzzone, Octavio Augusto; Speranza, Stefano; Delfino, Ines; Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods; Elsevier Science; Ecological Informatics; 77; 7-2023; 1-12 1574-9541 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/232108 |
| identifier_str_mv |
Rossini, Luca; Bruzzone, Octavio Augusto; Speranza, Stefano; Delfino, Ines; Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods; Elsevier Science; Ecological Informatics; 77; 7-2023; 1-12 1574-9541 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1574954123002613 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecoinf.2023.102232 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1854321544190230528 |
| score |
13.113929 |