Genealogical data in population medical genetics: Field guidelines

Autores
Poletta, Fernando Adrián; Orioli, Ieda M.; Castilla, Eduardo Enrique
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This is a guide for fieldwork in Population Medical Genetics research projects. Data collection, handling, and analysis from large pedigrees require the use of specific tools and methods not widely familiar to human geneticists, unfortunately leading to ineffective graphic pedigrees. Initially, the objective of the pedigree must be decided, and the available information sources need to be identified and validated. Data collection and recording by the tabulated method is advocated, and the involved techniques are presented. Genealogical and personal information are the two main components of pedigree data. While the latter is unique to each investigation project, the former is solely represented by gametic links between persons. The triad of a given pedigree member and its two parents constitutes the building unit of a genealogy. Likewise, three ID numbers representing those three elements of the triad is the record field required for any pedigree analysis. Pedigree construction, as well as pedigree and population data analysis, varies according to the pre-established objectives, the existing information, and the available resources.
Fil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Genética Médica Populacional. Estudio Colaborativo Latinoamericano de Malformaciones Congénitas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET.; Argentina
Fil: Orioli, Ieda M.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Castilla, Eduardo Enrique. Instituto Nacional de Genética Médica Populacional. Estudio Colaborativo Latinoamericano de Malformaciones Congénitas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Medical genetics
Population medical genetics
Geographic clusters
Rare diseases
Isolates
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33375

id CONICETDig_298d143775366383eaa72f41b9fd18fc
oai_identifier_str oai:ri.conicet.gov.ar:11336/33375
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Genealogical data in population medical genetics: Field guidelinesPoletta, Fernando AdriánOrioli, Ieda M.Castilla, Eduardo EnriqueMedical geneticsPopulation medical geneticsGeographic clustersRare diseasesIsolateshttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3This is a guide for fieldwork in Population Medical Genetics research projects. Data collection, handling, and analysis from large pedigrees require the use of specific tools and methods not widely familiar to human geneticists, unfortunately leading to ineffective graphic pedigrees. Initially, the objective of the pedigree must be decided, and the available information sources need to be identified and validated. Data collection and recording by the tabulated method is advocated, and the involved techniques are presented. Genealogical and personal information are the two main components of pedigree data. While the latter is unique to each investigation project, the former is solely represented by gametic links between persons. The triad of a given pedigree member and its two parents constitutes the building unit of a genealogy. Likewise, three ID numbers representing those three elements of the triad is the record field required for any pedigree analysis. Pedigree construction, as well as pedigree and population data analysis, varies according to the pre-established objectives, the existing information, and the available resources.Fil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Genética Médica Populacional. Estudio Colaborativo Latinoamericano de Malformaciones Congénitas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET.; ArgentinaFil: Orioli, Ieda M.. Universidade Federal do Rio de Janeiro; BrasilFil: Castilla, Eduardo Enrique. Instituto Nacional de Genética Médica Populacional. Estudio Colaborativo Latinoamericano de Malformaciones Congénitas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSociedade Brasileira de Genética2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33375Poletta, Fernando Adrián; Castilla, Eduardo Enrique; Orioli, Ieda M.; Genealogical data in population medical genetics: Field guidelines; Sociedade Brasileira de Genética; Genetics and Molecular Biology; 37; Supl. 1; 3-2014; 171-1851415-47571678-4685CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983591/info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/4vt2wjinfo:eu-repo/semantics/altIdentifier/doi/10.1590/S1415-47572014000200004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:27Zoai:ri.conicet.gov.ar:11336/33375instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:27.635CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Genealogical data in population medical genetics: Field guidelines
title Genealogical data in population medical genetics: Field guidelines
spellingShingle Genealogical data in population medical genetics: Field guidelines
Poletta, Fernando Adrián
Medical genetics
Population medical genetics
Geographic clusters
Rare diseases
Isolates
title_short Genealogical data in population medical genetics: Field guidelines
title_full Genealogical data in population medical genetics: Field guidelines
title_fullStr Genealogical data in population medical genetics: Field guidelines
title_full_unstemmed Genealogical data in population medical genetics: Field guidelines
title_sort Genealogical data in population medical genetics: Field guidelines
dc.creator.none.fl_str_mv Poletta, Fernando Adrián
Orioli, Ieda M.
Castilla, Eduardo Enrique
author Poletta, Fernando Adrián
author_facet Poletta, Fernando Adrián
Orioli, Ieda M.
Castilla, Eduardo Enrique
author_role author
author2 Orioli, Ieda M.
Castilla, Eduardo Enrique
author2_role author
author
dc.subject.none.fl_str_mv Medical genetics
Population medical genetics
Geographic clusters
Rare diseases
Isolates
topic Medical genetics
Population medical genetics
Geographic clusters
Rare diseases
Isolates
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv This is a guide for fieldwork in Population Medical Genetics research projects. Data collection, handling, and analysis from large pedigrees require the use of specific tools and methods not widely familiar to human geneticists, unfortunately leading to ineffective graphic pedigrees. Initially, the objective of the pedigree must be decided, and the available information sources need to be identified and validated. Data collection and recording by the tabulated method is advocated, and the involved techniques are presented. Genealogical and personal information are the two main components of pedigree data. While the latter is unique to each investigation project, the former is solely represented by gametic links between persons. The triad of a given pedigree member and its two parents constitutes the building unit of a genealogy. Likewise, three ID numbers representing those three elements of the triad is the record field required for any pedigree analysis. Pedigree construction, as well as pedigree and population data analysis, varies according to the pre-established objectives, the existing information, and the available resources.
Fil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Genética Médica Populacional. Estudio Colaborativo Latinoamericano de Malformaciones Congénitas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET.; Argentina
Fil: Orioli, Ieda M.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Castilla, Eduardo Enrique. Instituto Nacional de Genética Médica Populacional. Estudio Colaborativo Latinoamericano de Malformaciones Congénitas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description This is a guide for fieldwork in Population Medical Genetics research projects. Data collection, handling, and analysis from large pedigrees require the use of specific tools and methods not widely familiar to human geneticists, unfortunately leading to ineffective graphic pedigrees. Initially, the objective of the pedigree must be decided, and the available information sources need to be identified and validated. Data collection and recording by the tabulated method is advocated, and the involved techniques are presented. Genealogical and personal information are the two main components of pedigree data. While the latter is unique to each investigation project, the former is solely represented by gametic links between persons. The triad of a given pedigree member and its two parents constitutes the building unit of a genealogy. Likewise, three ID numbers representing those three elements of the triad is the record field required for any pedigree analysis. Pedigree construction, as well as pedigree and population data analysis, varies according to the pre-established objectives, the existing information, and the available resources.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33375
Poletta, Fernando Adrián; Castilla, Eduardo Enrique; Orioli, Ieda M.; Genealogical data in population medical genetics: Field guidelines; Sociedade Brasileira de Genética; Genetics and Molecular Biology; 37; Supl. 1; 3-2014; 171-185
1415-4757
1678-4685
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33375
identifier_str_mv Poletta, Fernando Adrián; Castilla, Eduardo Enrique; Orioli, Ieda M.; Genealogical data in population medical genetics: Field guidelines; Sociedade Brasileira de Genética; Genetics and Molecular Biology; 37; Supl. 1; 3-2014; 171-185
1415-4757
1678-4685
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983591/
info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/4vt2wj
info:eu-repo/semantics/altIdentifier/doi/10.1590/S1415-47572014000200004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Genética
publisher.none.fl_str_mv Sociedade Brasileira de Genética
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268973968654336
score 13.13397