Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production
- Autores
- Peralta, Nahuel Raúl; Cicore, Pablo Leandro; Marino, María Alejandra; Marques da Silva, José Rafael; Costa, Jose Luis
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The spatial variability in soils used for livestock production (i.e. Natraquoll and Natraqualf) at farm and paddock scale is usually very high. Understanding this spatial variation within a field is the first step for site-specific crop management. For this reason, we evaluated whether apparent electrical conductivity (ECa), a widely used proximal soil sensing technology, is a potential estimator of the edaphic variability in these types of soils. ECa and elevation data were collected in a paddock of 16 ha. Elevation was negatively associated with ECa. Geo-referenced soil samples were collected and analyzed for soil organic matter (OM) content, pH, the saturation extract electrical conductivity (ECext), available phosphorous (P), and anaerobically incubated Nitrogen (Nan). Relationships between soil properties and ECa were analyzed using regression analysis, principal components analysis (PCA), and stepwise regression. Principal components (PC) and the PC-stepwise were used to determine which soil properties have an important influence on ECa. In this experiment elevation was negatively associated with ECa. The data showed that pH, OM, and ECext exhibited a high correlation with ECa (R2=0.76; 0.70 and 0.65, respectively). Whereas P and Nan showed a lower correlation (R2=0.54 and 0.11 respectively). The model resulting from the PC-stepwise regression analysis explained slightly more than 69% of the total variation of the measured ECa, only retaining PC1. Therefore, ECext, pH and OM were considered key latent variables because they substantially influence the relationship between the PC1 and the ECa (loading factors>0.4). Results showed that ECa is associated with the spatial distribution of some important soil properties. Thus, ECa can be used as a support tool to implement site-specific management in soils for livestock use.
EEA Balcarce
Fil: Peralta, Nahuel Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Cicore, Pablo Leandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Marino, María A. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Marques da Silva, José Rafael. Centre for Interdisciplinary Development and Research on Environment, Applied Management and Space; Portugal. University of Évora, Escola de Ciências e Tecnologia. Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Portugal. Centro de Inovação em Tecnologias de Informação; Portugal
Fil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina - Fuente
- Spanish Journal of Agricultural Research 13 (4) : e1103, 8 pages (2015)
- Materia
-
Suelo
Propiedades del Suelo
Producción Pecuaria
Ganadería
Sistemas de Información Geográfica
Soil
Soil Properties
Livestock Production
Animal Husbandry
Geographical Information Systems
Propiedades Edáficas - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/4829
Ver los metadatos del registro completo
id |
INTADig_70a7e729d4a3d73e25fa0ad8ec95268d |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/4829 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock productionPeralta, Nahuel RaúlCicore, Pablo LeandroMarino, María AlejandraMarques da Silva, José RafaelCosta, Jose LuisSueloPropiedades del SueloProducción PecuariaGanaderíaSistemas de Información GeográficaSoilSoil PropertiesLivestock ProductionAnimal HusbandryGeographical Information SystemsPropiedades EdáficasThe spatial variability in soils used for livestock production (i.e. Natraquoll and Natraqualf) at farm and paddock scale is usually very high. Understanding this spatial variation within a field is the first step for site-specific crop management. For this reason, we evaluated whether apparent electrical conductivity (ECa), a widely used proximal soil sensing technology, is a potential estimator of the edaphic variability in these types of soils. ECa and elevation data were collected in a paddock of 16 ha. Elevation was negatively associated with ECa. Geo-referenced soil samples were collected and analyzed for soil organic matter (OM) content, pH, the saturation extract electrical conductivity (ECext), available phosphorous (P), and anaerobically incubated Nitrogen (Nan). Relationships between soil properties and ECa were analyzed using regression analysis, principal components analysis (PCA), and stepwise regression. Principal components (PC) and the PC-stepwise were used to determine which soil properties have an important influence on ECa. In this experiment elevation was negatively associated with ECa. The data showed that pH, OM, and ECext exhibited a high correlation with ECa (R2=0.76; 0.70 and 0.65, respectively). Whereas P and Nan showed a lower correlation (R2=0.54 and 0.11 respectively). The model resulting from the PC-stepwise regression analysis explained slightly more than 69% of the total variation of the measured ECa, only retaining PC1. Therefore, ECext, pH and OM were considered key latent variables because they substantially influence the relationship between the PC1 and the ECa (loading factors>0.4). Results showed that ECa is associated with the spatial distribution of some important soil properties. Thus, ECa can be used as a support tool to implement site-specific management in soils for livestock use.EEA BalcarceFil: Peralta, Nahuel Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Cicore, Pablo Leandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Marino, María A. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Marques da Silva, José Rafael. Centre for Interdisciplinary Development and Research on Environment, Applied Management and Space; Portugal. University of Évora, Escola de Ciências e Tecnologia. Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Portugal. Centro de Inovação em Tecnologias de Informação; PortugalFil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), España2019-04-05T13:56:29Z2019-04-05T13:56:29Z2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/4829http://revistas.inia.es/index.php/sjar/article/view/8032/25912171-9292https://dx.doi.org/10.5424/sjar/2015134-8032Spanish Journal of Agricultural Research 13 (4) : e1103, 8 pages (2015)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:44:37Zoai:localhost:20.500.12123/4829instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:38.172INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production |
title |
Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production |
spellingShingle |
Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production Peralta, Nahuel Raúl Suelo Propiedades del Suelo Producción Pecuaria Ganadería Sistemas de Información Geográfica Soil Soil Properties Livestock Production Animal Husbandry Geographical Information Systems Propiedades Edáficas |
title_short |
Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production |
title_full |
Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production |
title_fullStr |
Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production |
title_full_unstemmed |
Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production |
title_sort |
Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production |
dc.creator.none.fl_str_mv |
Peralta, Nahuel Raúl Cicore, Pablo Leandro Marino, María Alejandra Marques da Silva, José Rafael Costa, Jose Luis |
author |
Peralta, Nahuel Raúl |
author_facet |
Peralta, Nahuel Raúl Cicore, Pablo Leandro Marino, María Alejandra Marques da Silva, José Rafael Costa, Jose Luis |
author_role |
author |
author2 |
Cicore, Pablo Leandro Marino, María Alejandra Marques da Silva, José Rafael Costa, Jose Luis |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Suelo Propiedades del Suelo Producción Pecuaria Ganadería Sistemas de Información Geográfica Soil Soil Properties Livestock Production Animal Husbandry Geographical Information Systems Propiedades Edáficas |
topic |
Suelo Propiedades del Suelo Producción Pecuaria Ganadería Sistemas de Información Geográfica Soil Soil Properties Livestock Production Animal Husbandry Geographical Information Systems Propiedades Edáficas |
dc.description.none.fl_txt_mv |
The spatial variability in soils used for livestock production (i.e. Natraquoll and Natraqualf) at farm and paddock scale is usually very high. Understanding this spatial variation within a field is the first step for site-specific crop management. For this reason, we evaluated whether apparent electrical conductivity (ECa), a widely used proximal soil sensing technology, is a potential estimator of the edaphic variability in these types of soils. ECa and elevation data were collected in a paddock of 16 ha. Elevation was negatively associated with ECa. Geo-referenced soil samples were collected and analyzed for soil organic matter (OM) content, pH, the saturation extract electrical conductivity (ECext), available phosphorous (P), and anaerobically incubated Nitrogen (Nan). Relationships between soil properties and ECa were analyzed using regression analysis, principal components analysis (PCA), and stepwise regression. Principal components (PC) and the PC-stepwise were used to determine which soil properties have an important influence on ECa. In this experiment elevation was negatively associated with ECa. The data showed that pH, OM, and ECext exhibited a high correlation with ECa (R2=0.76; 0.70 and 0.65, respectively). Whereas P and Nan showed a lower correlation (R2=0.54 and 0.11 respectively). The model resulting from the PC-stepwise regression analysis explained slightly more than 69% of the total variation of the measured ECa, only retaining PC1. Therefore, ECext, pH and OM were considered key latent variables because they substantially influence the relationship between the PC1 and the ECa (loading factors>0.4). Results showed that ECa is associated with the spatial distribution of some important soil properties. Thus, ECa can be used as a support tool to implement site-specific management in soils for livestock use. EEA Balcarce Fil: Peralta, Nahuel Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Cicore, Pablo Leandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina Fil: Marino, María A. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Marques da Silva, José Rafael. Centre for Interdisciplinary Development and Research on Environment, Applied Management and Space; Portugal. University of Évora, Escola de Ciências e Tecnologia. Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Portugal. Centro de Inovação em Tecnologias de Informação; Portugal Fil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina |
description |
The spatial variability in soils used for livestock production (i.e. Natraquoll and Natraqualf) at farm and paddock scale is usually very high. Understanding this spatial variation within a field is the first step for site-specific crop management. For this reason, we evaluated whether apparent electrical conductivity (ECa), a widely used proximal soil sensing technology, is a potential estimator of the edaphic variability in these types of soils. ECa and elevation data were collected in a paddock of 16 ha. Elevation was negatively associated with ECa. Geo-referenced soil samples were collected and analyzed for soil organic matter (OM) content, pH, the saturation extract electrical conductivity (ECext), available phosphorous (P), and anaerobically incubated Nitrogen (Nan). Relationships between soil properties and ECa were analyzed using regression analysis, principal components analysis (PCA), and stepwise regression. Principal components (PC) and the PC-stepwise were used to determine which soil properties have an important influence on ECa. In this experiment elevation was negatively associated with ECa. The data showed that pH, OM, and ECext exhibited a high correlation with ECa (R2=0.76; 0.70 and 0.65, respectively). Whereas P and Nan showed a lower correlation (R2=0.54 and 0.11 respectively). The model resulting from the PC-stepwise regression analysis explained slightly more than 69% of the total variation of the measured ECa, only retaining PC1. Therefore, ECext, pH and OM were considered key latent variables because they substantially influence the relationship between the PC1 and the ECa (loading factors>0.4). Results showed that ECa is associated with the spatial distribution of some important soil properties. Thus, ECa can be used as a support tool to implement site-specific management in soils for livestock use. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2019-04-05T13:56:29Z 2019-04-05T13:56:29Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/4829 http://revistas.inia.es/index.php/sjar/article/view/8032/2591 2171-9292 https://dx.doi.org/10.5424/sjar/2015134-8032 |
url |
http://hdl.handle.net/20.500.12123/4829 http://revistas.inia.es/index.php/sjar/article/view/8032/2591 https://dx.doi.org/10.5424/sjar/2015134-8032 |
identifier_str_mv |
2171-9292 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), España |
publisher.none.fl_str_mv |
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), España |
dc.source.none.fl_str_mv |
Spanish Journal of Agricultural Research 13 (4) : e1103, 8 pages (2015) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619132463480832 |
score |
12.559606 |