Can edaphic variables improve DTPA-Based zinc diagnosis in corn?

Autores
Barbieri, Pablo; Sainz Rozas, Hernan Rene; Wingaard, Nicolás; Eyherabide, Mercedes; Reussi Calvo, Nahuel Ignacio; Salvagiotti, Fernando; Correndo, Adrián A.; Barbagelata, Pedro Anibal; Espósito Goya, Gabriel Pablo; Colazo, Juan Cruz; Echeverria, Hernan Eduardo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión enviada
Descripción
Current zinc (Zn) diagnostic methods for corn (Zea mays L.) are often based on soil DTPA (diethylenetriamine-pentaacetic acid) extractable Zn (DTPA-Zn). However, calibration of the DTPA-Zn test may be influenced by other soil properties such as pH, organic matter (SOM) and available Bray-P (PBray-1). Our objective was to assess the contribution of soil properties to a DTPA-Zn model used to predict corn response to Zn fertilization. We conducted 64 field trials with two Zn-fertilization treatments: with and without Zn fertilization. In all sites, we measured SOM, PBray-1, pH, and DTPA-Zn at 0- to 20-cm depth before sowing. Yield difference between Zn-fertilized and unfertilized treatments (Ydifference) was significant in 33% of the experimental site-years. In responsive site-years, the average Ydifference was 0.98 Mg ha-1 (11.4%). Soil organic matter was the only property that was a significant addition to the DTPA-Zn model for predicting the corn relative yield (Model R2 including SOM = 0.27). However, the improvement was nominal (Partial R2 of SOM = 0.06). Use of DTPA-Zn alone was suitable to discriminate Zn responsiveness among site-years based on the Ydifference by correctly diagnosing 81% of the outcomes. We determined three soil DPTA-Zn ranges with different probability of resulting in a Ydifference greater than zero when fertilized with Zn: high (<0.9 mg kg-1), medium (0.9–1.3 mg kg-1), and low (>1.3 mg kg-1). These soil-test-based Zn recommendations improve the identification of Zn-deficient soils allowing prevention of yield loss from Zn deficiency and more rational use of Zn fertilizers.
EEA Balcarce
Fil: Barbieri, Pablo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sainz Rozas, Hernan Rene. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wyngaard, Nicolás. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Eyherabide, Mercedes. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Reussi Calvo, Nahuel Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fertilab; Argentina
Fil: Salvagiotti, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Correndo, Adrián A. International Plant Nutrition Institute, Cono Sur; Argentina
Fil: Barbagelata, Pedro Anibal. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina
Fil: Espósito Goya, Gabriel P. Universidad Nacional de Río Cuarto; Argentina
Fil: Colazo, Juan Cruz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Luis; Argentina
Fil: Echeverria, Hernan Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fuente
Soil Science Society of America journal 81 (3) : 556-563. (2017)
Materia
Maíz
Maize
Zinc
Soil
Cinc
Suelo
Variables Edáficas
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/618

id INTADig_6866ab563fedeb89909ae56d48348c0d
oai_identifier_str oai:localhost:20.500.12123/618
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Can edaphic variables improve DTPA-Based zinc diagnosis in corn?Barbieri, PabloSainz Rozas, Hernan ReneWingaard, NicolásEyherabide, MercedesReussi Calvo, Nahuel IgnacioSalvagiotti, FernandoCorrendo, Adrián A.Barbagelata, Pedro AnibalEspósito Goya, Gabriel PabloColazo, Juan CruzEcheverria, Hernan EduardoMaízMaizeZincSoilCincSueloVariables EdáficasCurrent zinc (Zn) diagnostic methods for corn (Zea mays L.) are often based on soil DTPA (diethylenetriamine-pentaacetic acid) extractable Zn (DTPA-Zn). However, calibration of the DTPA-Zn test may be influenced by other soil properties such as pH, organic matter (SOM) and available Bray-P (PBray-1). Our objective was to assess the contribution of soil properties to a DTPA-Zn model used to predict corn response to Zn fertilization. We conducted 64 field trials with two Zn-fertilization treatments: with and without Zn fertilization. In all sites, we measured SOM, PBray-1, pH, and DTPA-Zn at 0- to 20-cm depth before sowing. Yield difference between Zn-fertilized and unfertilized treatments (Ydifference) was significant in 33% of the experimental site-years. In responsive site-years, the average Ydifference was 0.98 Mg ha-1 (11.4%). Soil organic matter was the only property that was a significant addition to the DTPA-Zn model for predicting the corn relative yield (Model R2 including SOM = 0.27). However, the improvement was nominal (Partial R2 of SOM = 0.06). Use of DTPA-Zn alone was suitable to discriminate Zn responsiveness among site-years based on the Ydifference by correctly diagnosing 81% of the outcomes. We determined three soil DPTA-Zn ranges with different probability of resulting in a Ydifference greater than zero when fertilized with Zn: high (<0.9 mg kg-1), medium (0.9–1.3 mg kg-1), and low (>1.3 mg kg-1). These soil-test-based Zn recommendations improve the identification of Zn-deficient soils allowing prevention of yield loss from Zn deficiency and more rational use of Zn fertilizers.EEA BalcarceFil: Barbieri, Pablo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sainz Rozas, Hernan Rene. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wyngaard, Nicolás. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Eyherabide, Mercedes. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Reussi Calvo, Nahuel Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fertilab; ArgentinaFil: Salvagiotti, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Correndo, Adrián A. International Plant Nutrition Institute, Cono Sur; ArgentinaFil: Barbagelata, Pedro Anibal. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; ArgentinaFil: Espósito Goya, Gabriel P. Universidad Nacional de Río Cuarto; ArgentinaFil: Colazo, Juan Cruz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Luis; ArgentinaFil: Echeverria, Hernan Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina2017-07-10T13:01:34Z2017-07-10T13:01:34Z2017-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/618https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2016.09.03161435-0661https://doi.org/10.2136/sssaj2016.09.0316Soil Science Society of America journal 81 (3) : 556-563. (2017)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:06Zoai:localhost:20.500.12123/618instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:07.123INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
title Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
spellingShingle Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
Barbieri, Pablo
Maíz
Maize
Zinc
Soil
Cinc
Suelo
Variables Edáficas
title_short Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
title_full Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
title_fullStr Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
title_full_unstemmed Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
title_sort Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
dc.creator.none.fl_str_mv Barbieri, Pablo
Sainz Rozas, Hernan Rene
Wingaard, Nicolás
Eyherabide, Mercedes
Reussi Calvo, Nahuel Ignacio
Salvagiotti, Fernando
Correndo, Adrián A.
Barbagelata, Pedro Anibal
Espósito Goya, Gabriel Pablo
Colazo, Juan Cruz
Echeverria, Hernan Eduardo
author Barbieri, Pablo
author_facet Barbieri, Pablo
Sainz Rozas, Hernan Rene
Wingaard, Nicolás
Eyherabide, Mercedes
Reussi Calvo, Nahuel Ignacio
Salvagiotti, Fernando
Correndo, Adrián A.
Barbagelata, Pedro Anibal
Espósito Goya, Gabriel Pablo
Colazo, Juan Cruz
Echeverria, Hernan Eduardo
author_role author
author2 Sainz Rozas, Hernan Rene
Wingaard, Nicolás
Eyherabide, Mercedes
Reussi Calvo, Nahuel Ignacio
Salvagiotti, Fernando
Correndo, Adrián A.
Barbagelata, Pedro Anibal
Espósito Goya, Gabriel Pablo
Colazo, Juan Cruz
Echeverria, Hernan Eduardo
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Maíz
Maize
Zinc
Soil
Cinc
Suelo
Variables Edáficas
topic Maíz
Maize
Zinc
Soil
Cinc
Suelo
Variables Edáficas
dc.description.none.fl_txt_mv Current zinc (Zn) diagnostic methods for corn (Zea mays L.) are often based on soil DTPA (diethylenetriamine-pentaacetic acid) extractable Zn (DTPA-Zn). However, calibration of the DTPA-Zn test may be influenced by other soil properties such as pH, organic matter (SOM) and available Bray-P (PBray-1). Our objective was to assess the contribution of soil properties to a DTPA-Zn model used to predict corn response to Zn fertilization. We conducted 64 field trials with two Zn-fertilization treatments: with and without Zn fertilization. In all sites, we measured SOM, PBray-1, pH, and DTPA-Zn at 0- to 20-cm depth before sowing. Yield difference between Zn-fertilized and unfertilized treatments (Ydifference) was significant in 33% of the experimental site-years. In responsive site-years, the average Ydifference was 0.98 Mg ha-1 (11.4%). Soil organic matter was the only property that was a significant addition to the DTPA-Zn model for predicting the corn relative yield (Model R2 including SOM = 0.27). However, the improvement was nominal (Partial R2 of SOM = 0.06). Use of DTPA-Zn alone was suitable to discriminate Zn responsiveness among site-years based on the Ydifference by correctly diagnosing 81% of the outcomes. We determined three soil DPTA-Zn ranges with different probability of resulting in a Ydifference greater than zero when fertilized with Zn: high (<0.9 mg kg-1), medium (0.9–1.3 mg kg-1), and low (>1.3 mg kg-1). These soil-test-based Zn recommendations improve the identification of Zn-deficient soils allowing prevention of yield loss from Zn deficiency and more rational use of Zn fertilizers.
EEA Balcarce
Fil: Barbieri, Pablo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sainz Rozas, Hernan Rene. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wyngaard, Nicolás. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Eyherabide, Mercedes. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Reussi Calvo, Nahuel Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fertilab; Argentina
Fil: Salvagiotti, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Correndo, Adrián A. International Plant Nutrition Institute, Cono Sur; Argentina
Fil: Barbagelata, Pedro Anibal. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina
Fil: Espósito Goya, Gabriel P. Universidad Nacional de Río Cuarto; Argentina
Fil: Colazo, Juan Cruz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Luis; Argentina
Fil: Echeverria, Hernan Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
description Current zinc (Zn) diagnostic methods for corn (Zea mays L.) are often based on soil DTPA (diethylenetriamine-pentaacetic acid) extractable Zn (DTPA-Zn). However, calibration of the DTPA-Zn test may be influenced by other soil properties such as pH, organic matter (SOM) and available Bray-P (PBray-1). Our objective was to assess the contribution of soil properties to a DTPA-Zn model used to predict corn response to Zn fertilization. We conducted 64 field trials with two Zn-fertilization treatments: with and without Zn fertilization. In all sites, we measured SOM, PBray-1, pH, and DTPA-Zn at 0- to 20-cm depth before sowing. Yield difference between Zn-fertilized and unfertilized treatments (Ydifference) was significant in 33% of the experimental site-years. In responsive site-years, the average Ydifference was 0.98 Mg ha-1 (11.4%). Soil organic matter was the only property that was a significant addition to the DTPA-Zn model for predicting the corn relative yield (Model R2 including SOM = 0.27). However, the improvement was nominal (Partial R2 of SOM = 0.06). Use of DTPA-Zn alone was suitable to discriminate Zn responsiveness among site-years based on the Ydifference by correctly diagnosing 81% of the outcomes. We determined three soil DPTA-Zn ranges with different probability of resulting in a Ydifference greater than zero when fertilized with Zn: high (<0.9 mg kg-1), medium (0.9–1.3 mg kg-1), and low (>1.3 mg kg-1). These soil-test-based Zn recommendations improve the identification of Zn-deficient soils allowing prevention of yield loss from Zn deficiency and more rational use of Zn fertilizers.
publishDate 2017
dc.date.none.fl_str_mv 2017-07-10T13:01:34Z
2017-07-10T13:01:34Z
2017-06-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/618
https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2016.09.0316
1435-0661
https://doi.org/10.2136/sssaj2016.09.0316
url http://hdl.handle.net/20.500.12123/618
https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2016.09.0316
https://doi.org/10.2136/sssaj2016.09.0316
identifier_str_mv 1435-0661
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Soil Science Society of America journal 81 (3) : 556-563. (2017)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619115060264960
score 12.559606