Fenotipado de alto caudal para estimar la altura de planta en cultivares de soja (Glycine max) utilizando modelos digitales de elevación e imágenes multiespectrales obtenidas con d...

Autores
Menes, Jose Fernando; Introna, Jimena; Portillo, Javier Esteban
Año de publicación
2024
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Presentación en diapositivas y resumen
El fenotipado para evaluar la altura de planta en soja es una tarea compleja y laboriosa, especialmente en programas de mejoramiento que involucran cientos de genotipos. La recolección manual de datos es lenta y propensa a errores, lo que dificulta la obtención de mediciones precisas a gran escala. En este contexto, los vehículos aéreos no tripulados (VANT) equipados con sensores multiespectrales surgen como una herramienta prometedora, capaces de automatizar y optimizar la medición de la altura de planta de manera eficiente, precisa y con menor esfuerzo. Este estudio tuvo como objetivo validar la eficacia de los VANT para estimar la altura en cultivares de soja. evaluaron 74 cultivares de distintos grupos de madurez (III, IV y V) pertenecientes a la Red de Evaluación de Cultivares de Soja (RECSO) en la EEA Pergamino del INTA, utilizando un diseño en bloques completos al azar con 3 repeticiones. A los 105 días después de la siembra, se realizó un vuelo a una altura de 40 m. Las imágenes de este se procesaron para obtener un ortomosaico con una resolución de 1,77 cm/píxel, compuesto de las bandas azul, verde, roja, borde rojo e infrarrojo cercano (NIR). Por otro lado, se generó un modelo digital de superficie (MDS) con una resolución espacial 3,53 cm/píxel, que incluye tanto la elevación del terreno como la de las plantas. A partir de este modelo, se creó un modelo digital de terreno (MDT) mediante la interpolación de 140 puntos visualmente identificados como suelo en el MDS, lo que permitió eliminar la vegetación del modelo. La diferencia entre el MDS y el MDT dio lugar a la creación de un modelo digital de elevación (MDE), que representa la altura de las plantas. De este último, se extrajeron los valores de altura del percentil 95% de cada microparcela. Con estos datos y las mediciones de campo realizadas con un metro, se llevó a cabo una regresión lineal que resultó en un R² de 0.65, un RMSE (Root Mean Square Error) de 5.46 cm y un NRMSE (Normalized Root Mean Square Error) de 7.74%. Para mejorar esta estimación, se extrajeron los valores espectrales por parcela del ortomosaico y se calculó el índice de diferencia normalizada del borde rojo (NDRE). Se construyó un modelo de regresión lineal múltiple utilizando Random Forest, que incorporó el índice NDRE y el percentil 95 de la altura del MDE para predecir la altura de campo. El modelo se entrenó con un 70% de los datos y se evaluó con el 30% restante, alcanzando un R² de 0.67, un RMSE de 4.35 cm y un NRMSE de 6.02%. Estos resultados indican un desempeño superior en la predicción de la altura de campo al integrar información espectral a los MDE. Este enfoque no solo permite realizar fenotipados con una precisión considerable para caracterizar materiales de soja, sino que también destaca el potencial de mejorar la estimación mediante el uso de índices espectrales, constituyendo una herramienta prometedora para aumentar la eficiencia en l programas de mejoramiento de soja.
EEA Pergamino
Fil: Menes, José Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sección Sistema de Información Geográfica (SIG). Becario; Argentina
Fil: Menes, José Fernando. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Genética; Argentina
Fil: Introna, Jimena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sector Agronomía; Argentina
Fil: Portillo, Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sección Sistema de Información Geográfica (SIG); Argentina
Fil: Portillo, Javier. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Ciencias Agrarias, Naturales y ambientales. Cátedra de Introducción al Tratamiento Digital de Imágenes Satelitales; Argentina
Fuente
2° Simposio De Ciencias Agrarias INTA "Un futuro sostenible: Integrando ciencia y producción en la agronomía moderna", Córdoba, del 14 al 15 de noviembre de 2024
Materia
Soja
Imagen Multiespectral
Procesamiento Digital de Imágenes
Aprendizaje Automático
Soybeans
Multispectral Imagery
Digital Image Processing
Machine Learning
Sensores Remotos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/21273

id INTADig_61b246a069fd1ab265a77574b0044a3b
oai_identifier_str oai:localhost:20.500.12123/21273
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Fenotipado de alto caudal para estimar la altura de planta en cultivares de soja (Glycine max) utilizando modelos digitales de elevación e imágenes multiespectrales obtenidas con dronesMenes, Jose FernandoIntrona, JimenaPortillo, Javier EstebanSojaImagen MultiespectralProcesamiento Digital de ImágenesAprendizaje AutomáticoSoybeansMultispectral ImageryDigital Image ProcessingMachine LearningSensores RemotosPresentación en diapositivas y resumenEl fenotipado para evaluar la altura de planta en soja es una tarea compleja y laboriosa, especialmente en programas de mejoramiento que involucran cientos de genotipos. La recolección manual de datos es lenta y propensa a errores, lo que dificulta la obtención de mediciones precisas a gran escala. En este contexto, los vehículos aéreos no tripulados (VANT) equipados con sensores multiespectrales surgen como una herramienta prometedora, capaces de automatizar y optimizar la medición de la altura de planta de manera eficiente, precisa y con menor esfuerzo. Este estudio tuvo como objetivo validar la eficacia de los VANT para estimar la altura en cultivares de soja. evaluaron 74 cultivares de distintos grupos de madurez (III, IV y V) pertenecientes a la Red de Evaluación de Cultivares de Soja (RECSO) en la EEA Pergamino del INTA, utilizando un diseño en bloques completos al azar con 3 repeticiones. A los 105 días después de la siembra, se realizó un vuelo a una altura de 40 m. Las imágenes de este se procesaron para obtener un ortomosaico con una resolución de 1,77 cm/píxel, compuesto de las bandas azul, verde, roja, borde rojo e infrarrojo cercano (NIR). Por otro lado, se generó un modelo digital de superficie (MDS) con una resolución espacial 3,53 cm/píxel, que incluye tanto la elevación del terreno como la de las plantas. A partir de este modelo, se creó un modelo digital de terreno (MDT) mediante la interpolación de 140 puntos visualmente identificados como suelo en el MDS, lo que permitió eliminar la vegetación del modelo. La diferencia entre el MDS y el MDT dio lugar a la creación de un modelo digital de elevación (MDE), que representa la altura de las plantas. De este último, se extrajeron los valores de altura del percentil 95% de cada microparcela. Con estos datos y las mediciones de campo realizadas con un metro, se llevó a cabo una regresión lineal que resultó en un R² de 0.65, un RMSE (Root Mean Square Error) de 5.46 cm y un NRMSE (Normalized Root Mean Square Error) de 7.74%. Para mejorar esta estimación, se extrajeron los valores espectrales por parcela del ortomosaico y se calculó el índice de diferencia normalizada del borde rojo (NDRE). Se construyó un modelo de regresión lineal múltiple utilizando Random Forest, que incorporó el índice NDRE y el percentil 95 de la altura del MDE para predecir la altura de campo. El modelo se entrenó con un 70% de los datos y se evaluó con el 30% restante, alcanzando un R² de 0.67, un RMSE de 4.35 cm y un NRMSE de 6.02%. Estos resultados indican un desempeño superior en la predicción de la altura de campo al integrar información espectral a los MDE. Este enfoque no solo permite realizar fenotipados con una precisión considerable para caracterizar materiales de soja, sino que también destaca el potencial de mejorar la estimación mediante el uso de índices espectrales, constituyendo una herramienta prometedora para aumentar la eficiencia en l programas de mejoramiento de soja.EEA PergaminoFil: Menes, José Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sección Sistema de Información Geográfica (SIG). Becario; ArgentinaFil: Menes, José Fernando. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Genética; ArgentinaFil: Introna, Jimena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sector Agronomía; ArgentinaFil: Portillo, Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sección Sistema de Información Geográfica (SIG); ArgentinaFil: Portillo, Javier. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Ciencias Agrarias, Naturales y ambientales. Cátedra de Introducción al Tratamiento Digital de Imágenes Satelitales; ArgentinaInstituto Nacional de Tecnología Agropecuaria (INTA)2025-02-14T13:06:15Z2025-02-14T13:06:15Z2024-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/20.500.12123/212732° Simposio De Ciencias Agrarias INTA "Un futuro sostenible: Integrando ciencia y producción en la agronomía moderna", Córdoba, del 14 al 15 de noviembre de 2024reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaspainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:47:08Zoai:localhost:20.500.12123/21273instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:47:08.628INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Fenotipado de alto caudal para estimar la altura de planta en cultivares de soja (Glycine max) utilizando modelos digitales de elevación e imágenes multiespectrales obtenidas con drones
title Fenotipado de alto caudal para estimar la altura de planta en cultivares de soja (Glycine max) utilizando modelos digitales de elevación e imágenes multiespectrales obtenidas con drones
spellingShingle Fenotipado de alto caudal para estimar la altura de planta en cultivares de soja (Glycine max) utilizando modelos digitales de elevación e imágenes multiespectrales obtenidas con drones
Menes, Jose Fernando
Soja
Imagen Multiespectral
Procesamiento Digital de Imágenes
Aprendizaje Automático
Soybeans
Multispectral Imagery
Digital Image Processing
Machine Learning
Sensores Remotos
title_short Fenotipado de alto caudal para estimar la altura de planta en cultivares de soja (Glycine max) utilizando modelos digitales de elevación e imágenes multiespectrales obtenidas con drones
title_full Fenotipado de alto caudal para estimar la altura de planta en cultivares de soja (Glycine max) utilizando modelos digitales de elevación e imágenes multiespectrales obtenidas con drones
title_fullStr Fenotipado de alto caudal para estimar la altura de planta en cultivares de soja (Glycine max) utilizando modelos digitales de elevación e imágenes multiespectrales obtenidas con drones
title_full_unstemmed Fenotipado de alto caudal para estimar la altura de planta en cultivares de soja (Glycine max) utilizando modelos digitales de elevación e imágenes multiespectrales obtenidas con drones
title_sort Fenotipado de alto caudal para estimar la altura de planta en cultivares de soja (Glycine max) utilizando modelos digitales de elevación e imágenes multiespectrales obtenidas con drones
dc.creator.none.fl_str_mv Menes, Jose Fernando
Introna, Jimena
Portillo, Javier Esteban
author Menes, Jose Fernando
author_facet Menes, Jose Fernando
Introna, Jimena
Portillo, Javier Esteban
author_role author
author2 Introna, Jimena
Portillo, Javier Esteban
author2_role author
author
dc.subject.none.fl_str_mv Soja
Imagen Multiespectral
Procesamiento Digital de Imágenes
Aprendizaje Automático
Soybeans
Multispectral Imagery
Digital Image Processing
Machine Learning
Sensores Remotos
topic Soja
Imagen Multiespectral
Procesamiento Digital de Imágenes
Aprendizaje Automático
Soybeans
Multispectral Imagery
Digital Image Processing
Machine Learning
Sensores Remotos
dc.description.none.fl_txt_mv Presentación en diapositivas y resumen
El fenotipado para evaluar la altura de planta en soja es una tarea compleja y laboriosa, especialmente en programas de mejoramiento que involucran cientos de genotipos. La recolección manual de datos es lenta y propensa a errores, lo que dificulta la obtención de mediciones precisas a gran escala. En este contexto, los vehículos aéreos no tripulados (VANT) equipados con sensores multiespectrales surgen como una herramienta prometedora, capaces de automatizar y optimizar la medición de la altura de planta de manera eficiente, precisa y con menor esfuerzo. Este estudio tuvo como objetivo validar la eficacia de los VANT para estimar la altura en cultivares de soja. evaluaron 74 cultivares de distintos grupos de madurez (III, IV y V) pertenecientes a la Red de Evaluación de Cultivares de Soja (RECSO) en la EEA Pergamino del INTA, utilizando un diseño en bloques completos al azar con 3 repeticiones. A los 105 días después de la siembra, se realizó un vuelo a una altura de 40 m. Las imágenes de este se procesaron para obtener un ortomosaico con una resolución de 1,77 cm/píxel, compuesto de las bandas azul, verde, roja, borde rojo e infrarrojo cercano (NIR). Por otro lado, se generó un modelo digital de superficie (MDS) con una resolución espacial 3,53 cm/píxel, que incluye tanto la elevación del terreno como la de las plantas. A partir de este modelo, se creó un modelo digital de terreno (MDT) mediante la interpolación de 140 puntos visualmente identificados como suelo en el MDS, lo que permitió eliminar la vegetación del modelo. La diferencia entre el MDS y el MDT dio lugar a la creación de un modelo digital de elevación (MDE), que representa la altura de las plantas. De este último, se extrajeron los valores de altura del percentil 95% de cada microparcela. Con estos datos y las mediciones de campo realizadas con un metro, se llevó a cabo una regresión lineal que resultó en un R² de 0.65, un RMSE (Root Mean Square Error) de 5.46 cm y un NRMSE (Normalized Root Mean Square Error) de 7.74%. Para mejorar esta estimación, se extrajeron los valores espectrales por parcela del ortomosaico y se calculó el índice de diferencia normalizada del borde rojo (NDRE). Se construyó un modelo de regresión lineal múltiple utilizando Random Forest, que incorporó el índice NDRE y el percentil 95 de la altura del MDE para predecir la altura de campo. El modelo se entrenó con un 70% de los datos y se evaluó con el 30% restante, alcanzando un R² de 0.67, un RMSE de 4.35 cm y un NRMSE de 6.02%. Estos resultados indican un desempeño superior en la predicción de la altura de campo al integrar información espectral a los MDE. Este enfoque no solo permite realizar fenotipados con una precisión considerable para caracterizar materiales de soja, sino que también destaca el potencial de mejorar la estimación mediante el uso de índices espectrales, constituyendo una herramienta prometedora para aumentar la eficiencia en l programas de mejoramiento de soja.
EEA Pergamino
Fil: Menes, José Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sección Sistema de Información Geográfica (SIG). Becario; Argentina
Fil: Menes, José Fernando. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Genética; Argentina
Fil: Introna, Jimena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sector Agronomía; Argentina
Fil: Portillo, Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Sección Sistema de Información Geográfica (SIG); Argentina
Fil: Portillo, Javier. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Ciencias Agrarias, Naturales y ambientales. Cátedra de Introducción al Tratamiento Digital de Imágenes Satelitales; Argentina
description Presentación en diapositivas y resumen
publishDate 2024
dc.date.none.fl_str_mv 2024-11
2025-02-14T13:06:15Z
2025-02-14T13:06:15Z
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/21273
url http://hdl.handle.net/20.500.12123/21273
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Nacional de Tecnología Agropecuaria (INTA)
publisher.none.fl_str_mv Instituto Nacional de Tecnología Agropecuaria (INTA)
dc.source.none.fl_str_mv 2° Simposio De Ciencias Agrarias INTA "Un futuro sostenible: Integrando ciencia y producción en la agronomía moderna", Córdoba, del 14 al 15 de noviembre de 2024
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619200453148672
score 12.559606