Detecting sources of resistance to multiple diseases in Argentine maize (Zea mays L.) germplasm
- Autores
- Kistner, María Belén; Nazar, Lázaro; Montenegro, Lucía Daniela; Cervigni, Gerardo Domingo Lucio; Galdeano, Ernestina; Iglesias, Juliana
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Maize (Zea mays L.), an important cereal for human and animal nutrition, is usually affected by multiple co-occurring pathogens that reduce production. Argentina is the fourth maize producer worldwide, with common rust (CR), northern corn leaf blight (NCLB), southern corn leaf blight (SCLB) and bacterial leaf streak (BLS) being important yield-limiting diseases in most maize producing areas. In this study, we aimed to identify genotypes with multiple disease resistance (MDR) for the introgression of broad-sense resistance into temperate maize breeding programs. We evaluated 87 genotypes from the Argentine public temperate inbred maize collection available from Instituto Nacional de Tecnología Agropecuaria (INTA) for their response to CR, NCLB, SCLB and BLS in up to five environments of Argentina. We compared four strategies to select sources of resistance to multiple diseases that could be used in breeding programs. Significant genotypic variation and high heritabilities were found for all disease resistances. The panel of inbred lines had numerous genotypes resistant to CR (80%) and BLS (78%), whereas genotypes resistant to NCLB (26%) or SCLB (30%) were less frequent. However, we were able to identify 12 genotypes as potential candidates for the introgression of broad-sense resistance. Our results indicate that the selection based on principal component analysis (PCA) was the most accurate methodology to detect MDR across all accessions. Maize studies based on MDR are scarce; to our knowledge, this is the first study conducted on Argentine germplasm. These findings will contribute to the strengthening of broad-sense resistance in temperate breeding programs as well as to the study of MDR detection.
EEA Pergamino
Fil: Kistner, María Belén. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Maíz; Argentina
Fil: Kistner, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Nazar, Lázaro. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Montenegro, Lucía Daniela. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cervigni, Gerardo Domingo Lucio. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
Fil: Galdeano, Ernestina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Galdeano, Ernestina. Instituto de Botánica de Noroeste (IBONE); Argentina
Fil: Iglesias, Juliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Maíz; Argentina
Fil: Iglesias, Juliana. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Agrarias, Naturales y Ambientales; Argentina - Fuente
- Euphytica 218 (5) : 48. (May 2022)
- Materia
-
Maíz
Germoplasma
Enfermedades de las Plantas
Genotipos
Resistencia a la Enfermedad
Roya
Tizón
Maize
Germplasm
Plant Diseases
Genotypes
Disease Resistance
Rusts
Blight
Best Linear Unbiased Predictor (BLUP)
Bacterial Leaf Streak (BLS) - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/11693
Ver los metadatos del registro completo
id |
INTADig_593dd829f42a2845bf9b5e28019c0e40 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/11693 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Detecting sources of resistance to multiple diseases in Argentine maize (Zea mays L.) germplasmKistner, María BelénNazar, LázaroMontenegro, Lucía DanielaCervigni, Gerardo Domingo LucioGaldeano, ErnestinaIglesias, JulianaMaízGermoplasmaEnfermedades de las PlantasGenotiposResistencia a la EnfermedadRoyaTizónMaizeGermplasmPlant DiseasesGenotypesDisease ResistanceRustsBlightBest Linear Unbiased Predictor (BLUP)Bacterial Leaf Streak (BLS)Maize (Zea mays L.), an important cereal for human and animal nutrition, is usually affected by multiple co-occurring pathogens that reduce production. Argentina is the fourth maize producer worldwide, with common rust (CR), northern corn leaf blight (NCLB), southern corn leaf blight (SCLB) and bacterial leaf streak (BLS) being important yield-limiting diseases in most maize producing areas. In this study, we aimed to identify genotypes with multiple disease resistance (MDR) for the introgression of broad-sense resistance into temperate maize breeding programs. We evaluated 87 genotypes from the Argentine public temperate inbred maize collection available from Instituto Nacional de Tecnología Agropecuaria (INTA) for their response to CR, NCLB, SCLB and BLS in up to five environments of Argentina. We compared four strategies to select sources of resistance to multiple diseases that could be used in breeding programs. Significant genotypic variation and high heritabilities were found for all disease resistances. The panel of inbred lines had numerous genotypes resistant to CR (80%) and BLS (78%), whereas genotypes resistant to NCLB (26%) or SCLB (30%) were less frequent. However, we were able to identify 12 genotypes as potential candidates for the introgression of broad-sense resistance. Our results indicate that the selection based on principal component analysis (PCA) was the most accurate methodology to detect MDR across all accessions. Maize studies based on MDR are scarce; to our knowledge, this is the first study conducted on Argentine germplasm. These findings will contribute to the strengthening of broad-sense resistance in temperate breeding programs as well as to the study of MDR detection.EEA PergaminoFil: Kistner, María Belén. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Maíz; ArgentinaFil: Kistner, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Nazar, Lázaro. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Montenegro, Lucía Daniela. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cervigni, Gerardo Domingo Lucio. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Galdeano, Ernestina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Galdeano, Ernestina. Instituto de Botánica de Noroeste (IBONE); ArgentinaFil: Iglesias, Juliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Maíz; ArgentinaFil: Iglesias, Juliana. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Agrarias, Naturales y Ambientales; ArgentinaSpringer Nature2022-04-21T11:07:46Z2022-04-21T11:07:46Z2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/11693https://link.springer.com/article/10.1007/s10681-022-03000-40014-23361573-5060 (online)https://doi.org/10.1007/s10681-022-03000-4Euphytica 218 (5) : 48. (May 2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-10-16T09:30:40Zoai:localhost:20.500.12123/11693instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:30:42.301INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Detecting sources of resistance to multiple diseases in Argentine maize (Zea mays L.) germplasm |
title |
Detecting sources of resistance to multiple diseases in Argentine maize (Zea mays L.) germplasm |
spellingShingle |
Detecting sources of resistance to multiple diseases in Argentine maize (Zea mays L.) germplasm Kistner, María Belén Maíz Germoplasma Enfermedades de las Plantas Genotipos Resistencia a la Enfermedad Roya Tizón Maize Germplasm Plant Diseases Genotypes Disease Resistance Rusts Blight Best Linear Unbiased Predictor (BLUP) Bacterial Leaf Streak (BLS) |
title_short |
Detecting sources of resistance to multiple diseases in Argentine maize (Zea mays L.) germplasm |
title_full |
Detecting sources of resistance to multiple diseases in Argentine maize (Zea mays L.) germplasm |
title_fullStr |
Detecting sources of resistance to multiple diseases in Argentine maize (Zea mays L.) germplasm |
title_full_unstemmed |
Detecting sources of resistance to multiple diseases in Argentine maize (Zea mays L.) germplasm |
title_sort |
Detecting sources of resistance to multiple diseases in Argentine maize (Zea mays L.) germplasm |
dc.creator.none.fl_str_mv |
Kistner, María Belén Nazar, Lázaro Montenegro, Lucía Daniela Cervigni, Gerardo Domingo Lucio Galdeano, Ernestina Iglesias, Juliana |
author |
Kistner, María Belén |
author_facet |
Kistner, María Belén Nazar, Lázaro Montenegro, Lucía Daniela Cervigni, Gerardo Domingo Lucio Galdeano, Ernestina Iglesias, Juliana |
author_role |
author |
author2 |
Nazar, Lázaro Montenegro, Lucía Daniela Cervigni, Gerardo Domingo Lucio Galdeano, Ernestina Iglesias, Juliana |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Maíz Germoplasma Enfermedades de las Plantas Genotipos Resistencia a la Enfermedad Roya Tizón Maize Germplasm Plant Diseases Genotypes Disease Resistance Rusts Blight Best Linear Unbiased Predictor (BLUP) Bacterial Leaf Streak (BLS) |
topic |
Maíz Germoplasma Enfermedades de las Plantas Genotipos Resistencia a la Enfermedad Roya Tizón Maize Germplasm Plant Diseases Genotypes Disease Resistance Rusts Blight Best Linear Unbiased Predictor (BLUP) Bacterial Leaf Streak (BLS) |
dc.description.none.fl_txt_mv |
Maize (Zea mays L.), an important cereal for human and animal nutrition, is usually affected by multiple co-occurring pathogens that reduce production. Argentina is the fourth maize producer worldwide, with common rust (CR), northern corn leaf blight (NCLB), southern corn leaf blight (SCLB) and bacterial leaf streak (BLS) being important yield-limiting diseases in most maize producing areas. In this study, we aimed to identify genotypes with multiple disease resistance (MDR) for the introgression of broad-sense resistance into temperate maize breeding programs. We evaluated 87 genotypes from the Argentine public temperate inbred maize collection available from Instituto Nacional de Tecnología Agropecuaria (INTA) for their response to CR, NCLB, SCLB and BLS in up to five environments of Argentina. We compared four strategies to select sources of resistance to multiple diseases that could be used in breeding programs. Significant genotypic variation and high heritabilities were found for all disease resistances. The panel of inbred lines had numerous genotypes resistant to CR (80%) and BLS (78%), whereas genotypes resistant to NCLB (26%) or SCLB (30%) were less frequent. However, we were able to identify 12 genotypes as potential candidates for the introgression of broad-sense resistance. Our results indicate that the selection based on principal component analysis (PCA) was the most accurate methodology to detect MDR across all accessions. Maize studies based on MDR are scarce; to our knowledge, this is the first study conducted on Argentine germplasm. These findings will contribute to the strengthening of broad-sense resistance in temperate breeding programs as well as to the study of MDR detection. EEA Pergamino Fil: Kistner, María Belén. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Maíz; Argentina Fil: Kistner, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Nazar, Lázaro. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina Fil: Montenegro, Lucía Daniela. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cervigni, Gerardo Domingo Lucio. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina Fil: Galdeano, Ernestina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Galdeano, Ernestina. Instituto de Botánica de Noroeste (IBONE); Argentina Fil: Iglesias, Juliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Maíz; Argentina Fil: Iglesias, Juliana. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Agrarias, Naturales y Ambientales; Argentina |
description |
Maize (Zea mays L.), an important cereal for human and animal nutrition, is usually affected by multiple co-occurring pathogens that reduce production. Argentina is the fourth maize producer worldwide, with common rust (CR), northern corn leaf blight (NCLB), southern corn leaf blight (SCLB) and bacterial leaf streak (BLS) being important yield-limiting diseases in most maize producing areas. In this study, we aimed to identify genotypes with multiple disease resistance (MDR) for the introgression of broad-sense resistance into temperate maize breeding programs. We evaluated 87 genotypes from the Argentine public temperate inbred maize collection available from Instituto Nacional de Tecnología Agropecuaria (INTA) for their response to CR, NCLB, SCLB and BLS in up to five environments of Argentina. We compared four strategies to select sources of resistance to multiple diseases that could be used in breeding programs. Significant genotypic variation and high heritabilities were found for all disease resistances. The panel of inbred lines had numerous genotypes resistant to CR (80%) and BLS (78%), whereas genotypes resistant to NCLB (26%) or SCLB (30%) were less frequent. However, we were able to identify 12 genotypes as potential candidates for the introgression of broad-sense resistance. Our results indicate that the selection based on principal component analysis (PCA) was the most accurate methodology to detect MDR across all accessions. Maize studies based on MDR are scarce; to our knowledge, this is the first study conducted on Argentine germplasm. These findings will contribute to the strengthening of broad-sense resistance in temperate breeding programs as well as to the study of MDR detection. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-21T11:07:46Z 2022-04-21T11:07:46Z 2022-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/11693 https://link.springer.com/article/10.1007/s10681-022-03000-4 0014-2336 1573-5060 (online) https://doi.org/10.1007/s10681-022-03000-4 |
url |
http://hdl.handle.net/20.500.12123/11693 https://link.springer.com/article/10.1007/s10681-022-03000-4 https://doi.org/10.1007/s10681-022-03000-4 |
identifier_str_mv |
0014-2336 1573-5060 (online) |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
Euphytica 218 (5) : 48. (May 2022) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846143545725943808 |
score |
12.712165 |