Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardía
- Autores
- Biasutti, Carlos Alberto; Balzarini, Monica Graciela
- Año de publicación
- 2017
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- La predicción precisa del comportamiento de híbridos de maíz no evaluados a campo permitirá un mayor progreso genético y menores costos en programas de mejoramiento genético. Datos de rendimiento de híbridos evaluados a campo se emplearon para predecir el comportamiento de nuevos híbridos en ambientes de siembra tardía. Se conformaron grupos de híbridos predictores de manera de maximizar y minimizar las relaciones de parentesco entre los híbridos predictores y aquellos a predecir y, por otra parte, utilizar valores de predicción obtenidos en ambientes de alto rendimiento y bajo rendimiento a fin de investigar la influencia de estos factores sobre la eficiencia de las predicciones. A fin de validar las predicciones se tomó un grupo de híbridos cuyo rendimiento en grano fue evaluado a campo, pero que no formaron parte del grupo inicial. Se calcularon los coeficientes de correlación entre los valores predichos y los observados para rendimiento con el fin de evaluar la efectividad de la predicción realizada. La mejor predicción de los híbridos no evaluados, se alcanzó utilizando la máxima relación de parentesco entre los híbridos combinada con datos obtenidos en el ambiente de mayor rendimiento promedio.
Accurate prediction of the phenotypical performance of untested single-cross hybrids allows for a faster genetic progress of the breeding pool at a reduced cost. Yield data of maize hybrids were employed to predict the performance of new untested hybrids in late sowing environments. Different groups of predictor hybrids were formed using both data from high and low relatedness between predictors and predicted hybrids and by employing data from low and high yielding environments. A new group of hybrids were formed and evaluated in field trials to validate the predictions. The effectiveness of the predictions was investigated by means of the correlation coefficient between predicted and observed yield values. The best predictions of untested new hybrids were reached by using maximum relatedness information combined with data obtained in the best yielding environments.
Fil: Biasutti, Carlos Alberto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina - Materia
-
MAÍZ
PARENTESCO
RENDIMIENTO
BLUP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/80457
Ver los metadatos del registro completo
id |
CONICETDig_0eac7d322cb52eb4fbd2e2b4519513dc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/80457 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardíaBiasutti, Carlos AlbertoBalzarini, Monica GracielaMAÍZPARENTESCORENDIMIENTOBLUPhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4La predicción precisa del comportamiento de híbridos de maíz no evaluados a campo permitirá un mayor progreso genético y menores costos en programas de mejoramiento genético. Datos de rendimiento de híbridos evaluados a campo se emplearon para predecir el comportamiento de nuevos híbridos en ambientes de siembra tardía. Se conformaron grupos de híbridos predictores de manera de maximizar y minimizar las relaciones de parentesco entre los híbridos predictores y aquellos a predecir y, por otra parte, utilizar valores de predicción obtenidos en ambientes de alto rendimiento y bajo rendimiento a fin de investigar la influencia de estos factores sobre la eficiencia de las predicciones. A fin de validar las predicciones se tomó un grupo de híbridos cuyo rendimiento en grano fue evaluado a campo, pero que no formaron parte del grupo inicial. Se calcularon los coeficientes de correlación entre los valores predichos y los observados para rendimiento con el fin de evaluar la efectividad de la predicción realizada. La mejor predicción de los híbridos no evaluados, se alcanzó utilizando la máxima relación de parentesco entre los híbridos combinada con datos obtenidos en el ambiente de mayor rendimiento promedio.Accurate prediction of the phenotypical performance of untested single-cross hybrids allows for a faster genetic progress of the breeding pool at a reduced cost. Yield data of maize hybrids were employed to predict the performance of new untested hybrids in late sowing environments. Different groups of predictor hybrids were formed using both data from high and low relatedness between predictors and predicted hybrids and by employing data from low and high yielding environments. A new group of hybrids were formed and evaluated in field trials to validate the predictions. The effectiveness of the predictions was investigated by means of the correlation coefficient between predicted and observed yield values. The best predictions of untested new hybrids were reached by using maximum relatedness information combined with data obtained in the best yielding environments.Fil: Biasutti, Carlos Alberto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaFil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaSociedad Argentina de Genética2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80457Biasutti, Carlos Alberto; Balzarini, Monica Graciela; Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardía; Sociedad Argentina de Genética; Journal of Basic and Applied Genetics; 28; 1; 6-2017; 19-261852-6233CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://sag.org.ar/jbag/project/vol-xxviii-issue-1/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:38Zoai:ri.conicet.gov.ar:11336/80457instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:39.216CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardía |
title |
Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardía |
spellingShingle |
Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardía Biasutti, Carlos Alberto MAÍZ PARENTESCO RENDIMIENTO BLUP |
title_short |
Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardía |
title_full |
Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardía |
title_fullStr |
Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardía |
title_full_unstemmed |
Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardía |
title_sort |
Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardía |
dc.creator.none.fl_str_mv |
Biasutti, Carlos Alberto Balzarini, Monica Graciela |
author |
Biasutti, Carlos Alberto |
author_facet |
Biasutti, Carlos Alberto Balzarini, Monica Graciela |
author_role |
author |
author2 |
Balzarini, Monica Graciela |
author2_role |
author |
dc.subject.none.fl_str_mv |
MAÍZ PARENTESCO RENDIMIENTO BLUP |
topic |
MAÍZ PARENTESCO RENDIMIENTO BLUP |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
La predicción precisa del comportamiento de híbridos de maíz no evaluados a campo permitirá un mayor progreso genético y menores costos en programas de mejoramiento genético. Datos de rendimiento de híbridos evaluados a campo se emplearon para predecir el comportamiento de nuevos híbridos en ambientes de siembra tardía. Se conformaron grupos de híbridos predictores de manera de maximizar y minimizar las relaciones de parentesco entre los híbridos predictores y aquellos a predecir y, por otra parte, utilizar valores de predicción obtenidos en ambientes de alto rendimiento y bajo rendimiento a fin de investigar la influencia de estos factores sobre la eficiencia de las predicciones. A fin de validar las predicciones se tomó un grupo de híbridos cuyo rendimiento en grano fue evaluado a campo, pero que no formaron parte del grupo inicial. Se calcularon los coeficientes de correlación entre los valores predichos y los observados para rendimiento con el fin de evaluar la efectividad de la predicción realizada. La mejor predicción de los híbridos no evaluados, se alcanzó utilizando la máxima relación de parentesco entre los híbridos combinada con datos obtenidos en el ambiente de mayor rendimiento promedio. Accurate prediction of the phenotypical performance of untested single-cross hybrids allows for a faster genetic progress of the breeding pool at a reduced cost. Yield data of maize hybrids were employed to predict the performance of new untested hybrids in late sowing environments. Different groups of predictor hybrids were formed using both data from high and low relatedness between predictors and predicted hybrids and by employing data from low and high yielding environments. A new group of hybrids were formed and evaluated in field trials to validate the predictions. The effectiveness of the predictions was investigated by means of the correlation coefficient between predicted and observed yield values. The best predictions of untested new hybrids were reached by using maximum relatedness information combined with data obtained in the best yielding environments. Fil: Biasutti, Carlos Alberto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina |
description |
La predicción precisa del comportamiento de híbridos de maíz no evaluados a campo permitirá un mayor progreso genético y menores costos en programas de mejoramiento genético. Datos de rendimiento de híbridos evaluados a campo se emplearon para predecir el comportamiento de nuevos híbridos en ambientes de siembra tardía. Se conformaron grupos de híbridos predictores de manera de maximizar y minimizar las relaciones de parentesco entre los híbridos predictores y aquellos a predecir y, por otra parte, utilizar valores de predicción obtenidos en ambientes de alto rendimiento y bajo rendimiento a fin de investigar la influencia de estos factores sobre la eficiencia de las predicciones. A fin de validar las predicciones se tomó un grupo de híbridos cuyo rendimiento en grano fue evaluado a campo, pero que no formaron parte del grupo inicial. Se calcularon los coeficientes de correlación entre los valores predichos y los observados para rendimiento con el fin de evaluar la efectividad de la predicción realizada. La mejor predicción de los híbridos no evaluados, se alcanzó utilizando la máxima relación de parentesco entre los híbridos combinada con datos obtenidos en el ambiente de mayor rendimiento promedio. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/80457 Biasutti, Carlos Alberto; Balzarini, Monica Graciela; Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardía; Sociedad Argentina de Genética; Journal of Basic and Applied Genetics; 28; 1; 6-2017; 19-26 1852-6233 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/80457 |
identifier_str_mv |
Biasutti, Carlos Alberto; Balzarini, Monica Graciela; Predicción del rendimiento de híbridos de maíz (Zea mays L.) en ambientes de siembra tardía; Sociedad Argentina de Genética; Journal of Basic and Applied Genetics; 28; 1; 6-2017; 19-26 1852-6233 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://sag.org.ar/jbag/project/vol-xxviii-issue-1/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad Argentina de Genética |
publisher.none.fl_str_mv |
Sociedad Argentina de Genética |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614016683474944 |
score |
13.070432 |