Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects o...

Autores
Hoyos Jaramillo, Alejandro; Palomares, Roberto A.; Bittar, João H.J.; Hurley, David John; Rodríguez, Adriana; González Altamiranda, Erika; Kirks, S.J.; Gutierrez, Alberto; Wall, S.; Miller, K.; Urdaneta, J.; Skrada, Katie A.; Lopez, D.; Fenley, M.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The objective of this study was to evaluate the effects of the vaccine administration route and the concurrent use of injectable trace minerals (ITM) with booster vaccination on the circulating leukocyte counts and T cell subpopulations in dairy calves challenged with Bovine viral diarrhea virus 2 (BVDV2) and Bovine herpes virus 1 (BHV1). A total of 60 Holstein male calves were used in this study. Forty-eight calves were administered a MLV intranasal (IN) vaccine containing BHV1, BRSV, BPI3V (Inforce 3®), and randomly assigned to subcutaneous (SC) administration of injectable trace minerals (ITM, n = 24) or saline (SAL, n = 24). Ten weeks later, the calves received booster vaccination using either SC or IN route and a second dose of ITM, or saline, according to previous groups [ITM-SC (n = 12), ITM-IN (n = 12), SAL-SC (n = 12), and SAL-IN (n = 12)]. Additionally, 12 calves did not receive vaccine or treatment (UNVAC, n = 12). Seven weeks after booster all calves were challenged with BVDV2 and seven days later with BHV1. Blood samples were collected on days −7, 0, 3, 6, 7, 10, 12 and 14 for determination of leukocyte counts and T cell subpopulations (CD4+, CD8+, WC1+ and CD25+). Unvaccinated calves had a significant leukopenia, compared to the vaccinated calves. There was a significant decrease of CD4+ CD8+ T cells over time after BVDV2 challenge, being more pronounced in the UNVAC calves. Calves receiving SC vaccination appeared to have greater CD4+ T cell number compared to the UNVAC calves. Calves treated with ITM had greater CD8+ T cells count than the other groups. Calves in the ITM-IN group had the greatest CD8+ T cell count on days 6 and 7 (P < 0.01). All vaccinated groups had steady response of CD4+CD25+ T cells and a slight increase of CD8+CD25+ T cells. In contrast, UNVAC calves had a significant increase of CD4+CD25+, CD8+CD25+ and WC1+CD25+ T cells on day 14. In conclusion, vaccine administration route and use of injectable trace minerals concurrent with vaccination affected the number CD4+ and CD8+ T cells in response to BVDV2 +BHV1 infection. Trace minerals supplementation concurrent with MLV vaccination might generate an improved cellular immunity against viral infections involved in respiratory disease.
EEA Balcarce
Fil: Hoyos Jaramillo, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: Palomares, R. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: Bittar, H.J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Florida. College of Veterinary Medicine. Department of Large Animal Clinical Sciences; Estados Unidos
Fil: Hurley, D. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: Rodríguez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: González Altamiranda, E. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina
Fil: González Altamiranda, E. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.
Fil: Kirks, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: Gutierrez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos
Fil: Wall, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos
Fil: Miller, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.
Fil: Urdaneta, J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos
Fil: Skrada, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.
Fil: Lopez, D. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.
Fil: Fenley, M. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.
Fuente
Veterinary Immunology and Immunopathology 280 : 110871 (February 2025)
Materia
Vacunación
Ternero
Pestivirus de la Diarrea Bovina
Diarrea Viral Bovina
Respuesta Inmunológica
Vaccination
Calves
Bovine Diarrhoea Pestivirus
Bovine Viral Diarrhoea
Immune Response
Dairy Cattle
Ganado de Leche
Nivel de accesibilidad
acceso restringido
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/22289

id INTADig_549e0f985d13325d37c58af8786b31ef
oai_identifier_str oai:localhost:20.500.12123/22289
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementationHoyos Jaramillo, AlejandroPalomares, Roberto A.Bittar, João H.J.Hurley, David JohnRodríguez, AdrianaGonzález Altamiranda, ErikaKirks, S.J.Gutierrez, AlbertoWall, S.Miller, K.Urdaneta, J.Skrada, Katie A.Lopez, D.Fenley, M.VacunaciónTerneroPestivirus de la Diarrea BovinaDiarrea Viral BovinaRespuesta InmunológicaVaccinationCalvesBovine Diarrhoea PestivirusBovine Viral DiarrhoeaImmune ResponseDairy CattleGanado de LecheThe objective of this study was to evaluate the effects of the vaccine administration route and the concurrent use of injectable trace minerals (ITM) with booster vaccination on the circulating leukocyte counts and T cell subpopulations in dairy calves challenged with Bovine viral diarrhea virus 2 (BVDV2) and Bovine herpes virus 1 (BHV1). A total of 60 Holstein male calves were used in this study. Forty-eight calves were administered a MLV intranasal (IN) vaccine containing BHV1, BRSV, BPI3V (Inforce 3®), and randomly assigned to subcutaneous (SC) administration of injectable trace minerals (ITM, n = 24) or saline (SAL, n = 24). Ten weeks later, the calves received booster vaccination using either SC or IN route and a second dose of ITM, or saline, according to previous groups [ITM-SC (n = 12), ITM-IN (n = 12), SAL-SC (n = 12), and SAL-IN (n = 12)]. Additionally, 12 calves did not receive vaccine or treatment (UNVAC, n = 12). Seven weeks after booster all calves were challenged with BVDV2 and seven days later with BHV1. Blood samples were collected on days −7, 0, 3, 6, 7, 10, 12 and 14 for determination of leukocyte counts and T cell subpopulations (CD4+, CD8+, WC1+ and CD25+). Unvaccinated calves had a significant leukopenia, compared to the vaccinated calves. There was a significant decrease of CD4+ CD8+ T cells over time after BVDV2 challenge, being more pronounced in the UNVAC calves. Calves receiving SC vaccination appeared to have greater CD4+ T cell number compared to the UNVAC calves. Calves treated with ITM had greater CD8+ T cells count than the other groups. Calves in the ITM-IN group had the greatest CD8+ T cell count on days 6 and 7 (P < 0.01). All vaccinated groups had steady response of CD4+CD25+ T cells and a slight increase of CD8+CD25+ T cells. In contrast, UNVAC calves had a significant increase of CD4+CD25+, CD8+CD25+ and WC1+CD25+ T cells on day 14. In conclusion, vaccine administration route and use of injectable trace minerals concurrent with vaccination affected the number CD4+ and CD8+ T cells in response to BVDV2 +BHV1 infection. Trace minerals supplementation concurrent with MLV vaccination might generate an improved cellular immunity against viral infections involved in respiratory disease.EEA BalcarceFil: Hoyos Jaramillo, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados UnidosFil: Palomares, R. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados UnidosFil: Bittar, H.J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Florida. College of Veterinary Medicine. Department of Large Animal Clinical Sciences; Estados UnidosFil: Hurley, D. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados UnidosFil: Rodríguez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados UnidosFil: González Altamiranda, E. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; ArgentinaFil: González Altamiranda, E. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Kirks, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados UnidosFil: Gutierrez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados UnidosFil: Wall, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados UnidosFil: Miller, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.Fil: Urdaneta, J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados UnidosFil: Skrada, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.Fil: Lopez, D. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.Fil: Fenley, M. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.Elsevier2025-05-15T10:55:44Z2025-05-15T10:55:44Z2025-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/22289https://www.sciencedirect.com/science/article/abs/pii/S0165242724001570?1873-2534 (Online)0165-2427 (Print)https://doi.org/10.1016/j.vetimm.2024.110871Veterinary Immunology and Immunopathology 280 : 110871 (February 2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:51:03Zoai:localhost:20.500.12123/22289instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:51:04.103INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
title Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
spellingShingle Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
Hoyos Jaramillo, Alejandro
Vacunación
Ternero
Pestivirus de la Diarrea Bovina
Diarrea Viral Bovina
Respuesta Inmunológica
Vaccination
Calves
Bovine Diarrhoea Pestivirus
Bovine Viral Diarrhoea
Immune Response
Dairy Cattle
Ganado de Leche
title_short Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
title_full Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
title_fullStr Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
title_full_unstemmed Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
title_sort Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
dc.creator.none.fl_str_mv Hoyos Jaramillo, Alejandro
Palomares, Roberto A.
Bittar, João H.J.
Hurley, David John
Rodríguez, Adriana
González Altamiranda, Erika
Kirks, S.J.
Gutierrez, Alberto
Wall, S.
Miller, K.
Urdaneta, J.
Skrada, Katie A.
Lopez, D.
Fenley, M.
author Hoyos Jaramillo, Alejandro
author_facet Hoyos Jaramillo, Alejandro
Palomares, Roberto A.
Bittar, João H.J.
Hurley, David John
Rodríguez, Adriana
González Altamiranda, Erika
Kirks, S.J.
Gutierrez, Alberto
Wall, S.
Miller, K.
Urdaneta, J.
Skrada, Katie A.
Lopez, D.
Fenley, M.
author_role author
author2 Palomares, Roberto A.
Bittar, João H.J.
Hurley, David John
Rodríguez, Adriana
González Altamiranda, Erika
Kirks, S.J.
Gutierrez, Alberto
Wall, S.
Miller, K.
Urdaneta, J.
Skrada, Katie A.
Lopez, D.
Fenley, M.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Vacunación
Ternero
Pestivirus de la Diarrea Bovina
Diarrea Viral Bovina
Respuesta Inmunológica
Vaccination
Calves
Bovine Diarrhoea Pestivirus
Bovine Viral Diarrhoea
Immune Response
Dairy Cattle
Ganado de Leche
topic Vacunación
Ternero
Pestivirus de la Diarrea Bovina
Diarrea Viral Bovina
Respuesta Inmunológica
Vaccination
Calves
Bovine Diarrhoea Pestivirus
Bovine Viral Diarrhoea
Immune Response
Dairy Cattle
Ganado de Leche
dc.description.none.fl_txt_mv The objective of this study was to evaluate the effects of the vaccine administration route and the concurrent use of injectable trace minerals (ITM) with booster vaccination on the circulating leukocyte counts and T cell subpopulations in dairy calves challenged with Bovine viral diarrhea virus 2 (BVDV2) and Bovine herpes virus 1 (BHV1). A total of 60 Holstein male calves were used in this study. Forty-eight calves were administered a MLV intranasal (IN) vaccine containing BHV1, BRSV, BPI3V (Inforce 3®), and randomly assigned to subcutaneous (SC) administration of injectable trace minerals (ITM, n = 24) or saline (SAL, n = 24). Ten weeks later, the calves received booster vaccination using either SC or IN route and a second dose of ITM, or saline, according to previous groups [ITM-SC (n = 12), ITM-IN (n = 12), SAL-SC (n = 12), and SAL-IN (n = 12)]. Additionally, 12 calves did not receive vaccine or treatment (UNVAC, n = 12). Seven weeks after booster all calves were challenged with BVDV2 and seven days later with BHV1. Blood samples were collected on days −7, 0, 3, 6, 7, 10, 12 and 14 for determination of leukocyte counts and T cell subpopulations (CD4+, CD8+, WC1+ and CD25+). Unvaccinated calves had a significant leukopenia, compared to the vaccinated calves. There was a significant decrease of CD4+ CD8+ T cells over time after BVDV2 challenge, being more pronounced in the UNVAC calves. Calves receiving SC vaccination appeared to have greater CD4+ T cell number compared to the UNVAC calves. Calves treated with ITM had greater CD8+ T cells count than the other groups. Calves in the ITM-IN group had the greatest CD8+ T cell count on days 6 and 7 (P < 0.01). All vaccinated groups had steady response of CD4+CD25+ T cells and a slight increase of CD8+CD25+ T cells. In contrast, UNVAC calves had a significant increase of CD4+CD25+, CD8+CD25+ and WC1+CD25+ T cells on day 14. In conclusion, vaccine administration route and use of injectable trace minerals concurrent with vaccination affected the number CD4+ and CD8+ T cells in response to BVDV2 +BHV1 infection. Trace minerals supplementation concurrent with MLV vaccination might generate an improved cellular immunity against viral infections involved in respiratory disease.
EEA Balcarce
Fil: Hoyos Jaramillo, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: Palomares, R. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: Bittar, H.J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Florida. College of Veterinary Medicine. Department of Large Animal Clinical Sciences; Estados Unidos
Fil: Hurley, D. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: Rodríguez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: González Altamiranda, E. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina
Fil: González Altamiranda, E. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.
Fil: Kirks, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: Gutierrez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos
Fil: Wall, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos
Fil: Miller, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.
Fil: Urdaneta, J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos
Fil: Skrada, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.
Fil: Lopez, D. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.
Fil: Fenley, M. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.
description The objective of this study was to evaluate the effects of the vaccine administration route and the concurrent use of injectable trace minerals (ITM) with booster vaccination on the circulating leukocyte counts and T cell subpopulations in dairy calves challenged with Bovine viral diarrhea virus 2 (BVDV2) and Bovine herpes virus 1 (BHV1). A total of 60 Holstein male calves were used in this study. Forty-eight calves were administered a MLV intranasal (IN) vaccine containing BHV1, BRSV, BPI3V (Inforce 3®), and randomly assigned to subcutaneous (SC) administration of injectable trace minerals (ITM, n = 24) or saline (SAL, n = 24). Ten weeks later, the calves received booster vaccination using either SC or IN route and a second dose of ITM, or saline, according to previous groups [ITM-SC (n = 12), ITM-IN (n = 12), SAL-SC (n = 12), and SAL-IN (n = 12)]. Additionally, 12 calves did not receive vaccine or treatment (UNVAC, n = 12). Seven weeks after booster all calves were challenged with BVDV2 and seven days later with BHV1. Blood samples were collected on days −7, 0, 3, 6, 7, 10, 12 and 14 for determination of leukocyte counts and T cell subpopulations (CD4+, CD8+, WC1+ and CD25+). Unvaccinated calves had a significant leukopenia, compared to the vaccinated calves. There was a significant decrease of CD4+ CD8+ T cells over time after BVDV2 challenge, being more pronounced in the UNVAC calves. Calves receiving SC vaccination appeared to have greater CD4+ T cell number compared to the UNVAC calves. Calves treated with ITM had greater CD8+ T cells count than the other groups. Calves in the ITM-IN group had the greatest CD8+ T cell count on days 6 and 7 (P < 0.01). All vaccinated groups had steady response of CD4+CD25+ T cells and a slight increase of CD8+CD25+ T cells. In contrast, UNVAC calves had a significant increase of CD4+CD25+, CD8+CD25+ and WC1+CD25+ T cells on day 14. In conclusion, vaccine administration route and use of injectable trace minerals concurrent with vaccination affected the number CD4+ and CD8+ T cells in response to BVDV2 +BHV1 infection. Trace minerals supplementation concurrent with MLV vaccination might generate an improved cellular immunity against viral infections involved in respiratory disease.
publishDate 2025
dc.date.none.fl_str_mv 2025-05-15T10:55:44Z
2025-05-15T10:55:44Z
2025-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/22289
https://www.sciencedirect.com/science/article/abs/pii/S0165242724001570?
1873-2534 (Online)
0165-2427 (Print)
https://doi.org/10.1016/j.vetimm.2024.110871
url http://hdl.handle.net/20.500.12123/22289
https://www.sciencedirect.com/science/article/abs/pii/S0165242724001570?
https://doi.org/10.1016/j.vetimm.2024.110871
identifier_str_mv 1873-2534 (Online)
0165-2427 (Print)
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Veterinary Immunology and Immunopathology 280 : 110871 (February 2025)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341440131170304
score 12.623145