Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects o...
- Autores
- Hoyos Jaramillo, Alejandro; Palomares, Roberto A.; Bittar, João H.J.; Hurley, David John; Rodríguez, Adriana; González Altamiranda, Erika; Kirks, S.J.; Gutierrez, Alberto; Wall, S.; Miller, K.; Urdaneta, J.; Skrada, Katie A.; Lopez, D.; Fenley, M.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The objective of this study was to evaluate the effects of the vaccine administration route and the concurrent use of injectable trace minerals (ITM) with booster vaccination on the circulating leukocyte counts and T cell subpopulations in dairy calves challenged with Bovine viral diarrhea virus 2 (BVDV2) and Bovine herpes virus 1 (BHV1). A total of 60 Holstein male calves were used in this study. Forty-eight calves were administered a MLV intranasal (IN) vaccine containing BHV1, BRSV, BPI3V (Inforce 3®), and randomly assigned to subcutaneous (SC) administration of injectable trace minerals (ITM, n = 24) or saline (SAL, n = 24). Ten weeks later, the calves received booster vaccination using either SC or IN route and a second dose of ITM, or saline, according to previous groups [ITM-SC (n = 12), ITM-IN (n = 12), SAL-SC (n = 12), and SAL-IN (n = 12)]. Additionally, 12 calves did not receive vaccine or treatment (UNVAC, n = 12). Seven weeks after booster all calves were challenged with BVDV2 and seven days later with BHV1. Blood samples were collected on days −7, 0, 3, 6, 7, 10, 12 and 14 for determination of leukocyte counts and T cell subpopulations (CD4+, CD8+, WC1+ and CD25+). Unvaccinated calves had a significant leukopenia, compared to the vaccinated calves. There was a significant decrease of CD4+ CD8+ T cells over time after BVDV2 challenge, being more pronounced in the UNVAC calves. Calves receiving SC vaccination appeared to have greater CD4+ T cell number compared to the UNVAC calves. Calves treated with ITM had greater CD8+ T cells count than the other groups. Calves in the ITM-IN group had the greatest CD8+ T cell count on days 6 and 7 (P < 0.01). All vaccinated groups had steady response of CD4+CD25+ T cells and a slight increase of CD8+CD25+ T cells. In contrast, UNVAC calves had a significant increase of CD4+CD25+, CD8+CD25+ and WC1+CD25+ T cells on day 14. In conclusion, vaccine administration route and use of injectable trace minerals concurrent with vaccination affected the number CD4+ and CD8+ T cells in response to BVDV2 +BHV1 infection. Trace minerals supplementation concurrent with MLV vaccination might generate an improved cellular immunity against viral infections involved in respiratory disease.
EEA Balcarce
Fil: Hoyos Jaramillo, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: Palomares, R. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: Bittar, H.J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Florida. College of Veterinary Medicine. Department of Large Animal Clinical Sciences; Estados Unidos
Fil: Hurley, D. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: Rodríguez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: González Altamiranda, E. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina
Fil: González Altamiranda, E. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.
Fil: Kirks, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos
Fil: Gutierrez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos
Fil: Wall, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos
Fil: Miller, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.
Fil: Urdaneta, J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos
Fil: Skrada, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.
Fil: Lopez, D. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.
Fil: Fenley, M. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. - Fuente
- Veterinary Immunology and Immunopathology 280 : 110871 (February 2025)
- Materia
-
Vacunación
Ternero
Pestivirus de la Diarrea Bovina
Diarrea Viral Bovina
Respuesta Inmunológica
Vaccination
Calves
Bovine Diarrhoea Pestivirus
Bovine Viral Diarrhoea
Immune Response
Dairy Cattle
Ganado de Leche - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/22289
Ver los metadatos del registro completo
id |
INTADig_549e0f985d13325d37c58af8786b31ef |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/22289 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementationHoyos Jaramillo, AlejandroPalomares, Roberto A.Bittar, João H.J.Hurley, David JohnRodríguez, AdrianaGonzález Altamiranda, ErikaKirks, S.J.Gutierrez, AlbertoWall, S.Miller, K.Urdaneta, J.Skrada, Katie A.Lopez, D.Fenley, M.VacunaciónTerneroPestivirus de la Diarrea BovinaDiarrea Viral BovinaRespuesta InmunológicaVaccinationCalvesBovine Diarrhoea PestivirusBovine Viral DiarrhoeaImmune ResponseDairy CattleGanado de LecheThe objective of this study was to evaluate the effects of the vaccine administration route and the concurrent use of injectable trace minerals (ITM) with booster vaccination on the circulating leukocyte counts and T cell subpopulations in dairy calves challenged with Bovine viral diarrhea virus 2 (BVDV2) and Bovine herpes virus 1 (BHV1). A total of 60 Holstein male calves were used in this study. Forty-eight calves were administered a MLV intranasal (IN) vaccine containing BHV1, BRSV, BPI3V (Inforce 3®), and randomly assigned to subcutaneous (SC) administration of injectable trace minerals (ITM, n = 24) or saline (SAL, n = 24). Ten weeks later, the calves received booster vaccination using either SC or IN route and a second dose of ITM, or saline, according to previous groups [ITM-SC (n = 12), ITM-IN (n = 12), SAL-SC (n = 12), and SAL-IN (n = 12)]. Additionally, 12 calves did not receive vaccine or treatment (UNVAC, n = 12). Seven weeks after booster all calves were challenged with BVDV2 and seven days later with BHV1. Blood samples were collected on days −7, 0, 3, 6, 7, 10, 12 and 14 for determination of leukocyte counts and T cell subpopulations (CD4+, CD8+, WC1+ and CD25+). Unvaccinated calves had a significant leukopenia, compared to the vaccinated calves. There was a significant decrease of CD4+ CD8+ T cells over time after BVDV2 challenge, being more pronounced in the UNVAC calves. Calves receiving SC vaccination appeared to have greater CD4+ T cell number compared to the UNVAC calves. Calves treated with ITM had greater CD8+ T cells count than the other groups. Calves in the ITM-IN group had the greatest CD8+ T cell count on days 6 and 7 (P < 0.01). All vaccinated groups had steady response of CD4+CD25+ T cells and a slight increase of CD8+CD25+ T cells. In contrast, UNVAC calves had a significant increase of CD4+CD25+, CD8+CD25+ and WC1+CD25+ T cells on day 14. In conclusion, vaccine administration route and use of injectable trace minerals concurrent with vaccination affected the number CD4+ and CD8+ T cells in response to BVDV2 +BHV1 infection. Trace minerals supplementation concurrent with MLV vaccination might generate an improved cellular immunity against viral infections involved in respiratory disease.EEA BalcarceFil: Hoyos Jaramillo, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados UnidosFil: Palomares, R. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados UnidosFil: Bittar, H.J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Florida. College of Veterinary Medicine. Department of Large Animal Clinical Sciences; Estados UnidosFil: Hurley, D. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados UnidosFil: Rodríguez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados UnidosFil: González Altamiranda, E. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; ArgentinaFil: González Altamiranda, E. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Kirks, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados UnidosFil: Gutierrez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados UnidosFil: Wall, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados UnidosFil: Miller, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.Fil: Urdaneta, J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados UnidosFil: Skrada, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.Fil: Lopez, D. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.Fil: Fenley, M. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos.Elsevier2025-05-15T10:55:44Z2025-05-15T10:55:44Z2025-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/22289https://www.sciencedirect.com/science/article/abs/pii/S0165242724001570?1873-2534 (Online)0165-2427 (Print)https://doi.org/10.1016/j.vetimm.2024.110871Veterinary Immunology and Immunopathology 280 : 110871 (February 2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:51:03Zoai:localhost:20.500.12123/22289instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:51:04.103INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation |
title |
Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation |
spellingShingle |
Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation Hoyos Jaramillo, Alejandro Vacunación Ternero Pestivirus de la Diarrea Bovina Diarrea Viral Bovina Respuesta Inmunológica Vaccination Calves Bovine Diarrhoea Pestivirus Bovine Viral Diarrhoea Immune Response Dairy Cattle Ganado de Leche |
title_short |
Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation |
title_full |
Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation |
title_fullStr |
Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation |
title_full_unstemmed |
Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation |
title_sort |
Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation |
dc.creator.none.fl_str_mv |
Hoyos Jaramillo, Alejandro Palomares, Roberto A. Bittar, João H.J. Hurley, David John Rodríguez, Adriana González Altamiranda, Erika Kirks, S.J. Gutierrez, Alberto Wall, S. Miller, K. Urdaneta, J. Skrada, Katie A. Lopez, D. Fenley, M. |
author |
Hoyos Jaramillo, Alejandro |
author_facet |
Hoyos Jaramillo, Alejandro Palomares, Roberto A. Bittar, João H.J. Hurley, David John Rodríguez, Adriana González Altamiranda, Erika Kirks, S.J. Gutierrez, Alberto Wall, S. Miller, K. Urdaneta, J. Skrada, Katie A. Lopez, D. Fenley, M. |
author_role |
author |
author2 |
Palomares, Roberto A. Bittar, João H.J. Hurley, David John Rodríguez, Adriana González Altamiranda, Erika Kirks, S.J. Gutierrez, Alberto Wall, S. Miller, K. Urdaneta, J. Skrada, Katie A. Lopez, D. Fenley, M. |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Vacunación Ternero Pestivirus de la Diarrea Bovina Diarrea Viral Bovina Respuesta Inmunológica Vaccination Calves Bovine Diarrhoea Pestivirus Bovine Viral Diarrhoea Immune Response Dairy Cattle Ganado de Leche |
topic |
Vacunación Ternero Pestivirus de la Diarrea Bovina Diarrea Viral Bovina Respuesta Inmunológica Vaccination Calves Bovine Diarrhoea Pestivirus Bovine Viral Diarrhoea Immune Response Dairy Cattle Ganado de Leche |
dc.description.none.fl_txt_mv |
The objective of this study was to evaluate the effects of the vaccine administration route and the concurrent use of injectable trace minerals (ITM) with booster vaccination on the circulating leukocyte counts and T cell subpopulations in dairy calves challenged with Bovine viral diarrhea virus 2 (BVDV2) and Bovine herpes virus 1 (BHV1). A total of 60 Holstein male calves were used in this study. Forty-eight calves were administered a MLV intranasal (IN) vaccine containing BHV1, BRSV, BPI3V (Inforce 3®), and randomly assigned to subcutaneous (SC) administration of injectable trace minerals (ITM, n = 24) or saline (SAL, n = 24). Ten weeks later, the calves received booster vaccination using either SC or IN route and a second dose of ITM, or saline, according to previous groups [ITM-SC (n = 12), ITM-IN (n = 12), SAL-SC (n = 12), and SAL-IN (n = 12)]. Additionally, 12 calves did not receive vaccine or treatment (UNVAC, n = 12). Seven weeks after booster all calves were challenged with BVDV2 and seven days later with BHV1. Blood samples were collected on days −7, 0, 3, 6, 7, 10, 12 and 14 for determination of leukocyte counts and T cell subpopulations (CD4+, CD8+, WC1+ and CD25+). Unvaccinated calves had a significant leukopenia, compared to the vaccinated calves. There was a significant decrease of CD4+ CD8+ T cells over time after BVDV2 challenge, being more pronounced in the UNVAC calves. Calves receiving SC vaccination appeared to have greater CD4+ T cell number compared to the UNVAC calves. Calves treated with ITM had greater CD8+ T cells count than the other groups. Calves in the ITM-IN group had the greatest CD8+ T cell count on days 6 and 7 (P < 0.01). All vaccinated groups had steady response of CD4+CD25+ T cells and a slight increase of CD8+CD25+ T cells. In contrast, UNVAC calves had a significant increase of CD4+CD25+, CD8+CD25+ and WC1+CD25+ T cells on day 14. In conclusion, vaccine administration route and use of injectable trace minerals concurrent with vaccination affected the number CD4+ and CD8+ T cells in response to BVDV2 +BHV1 infection. Trace minerals supplementation concurrent with MLV vaccination might generate an improved cellular immunity against viral infections involved in respiratory disease. EEA Balcarce Fil: Hoyos Jaramillo, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos Fil: Palomares, R. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos Fil: Bittar, H.J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Florida. College of Veterinary Medicine. Department of Large Animal Clinical Sciences; Estados Unidos Fil: Hurley, D. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos Fil: Rodríguez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos Fil: González Altamiranda, E. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina Fil: González Altamiranda, E. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Fil: Kirks, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos Fil: Gutierrez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos Fil: Wall, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos Fil: Miller, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. Fil: Urdaneta, J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos Fil: Skrada, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. Fil: Lopez, D. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. Fil: Fenley, M. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. |
description |
The objective of this study was to evaluate the effects of the vaccine administration route and the concurrent use of injectable trace minerals (ITM) with booster vaccination on the circulating leukocyte counts and T cell subpopulations in dairy calves challenged with Bovine viral diarrhea virus 2 (BVDV2) and Bovine herpes virus 1 (BHV1). A total of 60 Holstein male calves were used in this study. Forty-eight calves were administered a MLV intranasal (IN) vaccine containing BHV1, BRSV, BPI3V (Inforce 3®), and randomly assigned to subcutaneous (SC) administration of injectable trace minerals (ITM, n = 24) or saline (SAL, n = 24). Ten weeks later, the calves received booster vaccination using either SC or IN route and a second dose of ITM, or saline, according to previous groups [ITM-SC (n = 12), ITM-IN (n = 12), SAL-SC (n = 12), and SAL-IN (n = 12)]. Additionally, 12 calves did not receive vaccine or treatment (UNVAC, n = 12). Seven weeks after booster all calves were challenged with BVDV2 and seven days later with BHV1. Blood samples were collected on days −7, 0, 3, 6, 7, 10, 12 and 14 for determination of leukocyte counts and T cell subpopulations (CD4+, CD8+, WC1+ and CD25+). Unvaccinated calves had a significant leukopenia, compared to the vaccinated calves. There was a significant decrease of CD4+ CD8+ T cells over time after BVDV2 challenge, being more pronounced in the UNVAC calves. Calves receiving SC vaccination appeared to have greater CD4+ T cell number compared to the UNVAC calves. Calves treated with ITM had greater CD8+ T cells count than the other groups. Calves in the ITM-IN group had the greatest CD8+ T cell count on days 6 and 7 (P < 0.01). All vaccinated groups had steady response of CD4+CD25+ T cells and a slight increase of CD8+CD25+ T cells. In contrast, UNVAC calves had a significant increase of CD4+CD25+, CD8+CD25+ and WC1+CD25+ T cells on day 14. In conclusion, vaccine administration route and use of injectable trace minerals concurrent with vaccination affected the number CD4+ and CD8+ T cells in response to BVDV2 +BHV1 infection. Trace minerals supplementation concurrent with MLV vaccination might generate an improved cellular immunity against viral infections involved in respiratory disease. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-05-15T10:55:44Z 2025-05-15T10:55:44Z 2025-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/22289 https://www.sciencedirect.com/science/article/abs/pii/S0165242724001570? 1873-2534 (Online) 0165-2427 (Print) https://doi.org/10.1016/j.vetimm.2024.110871 |
url |
http://hdl.handle.net/20.500.12123/22289 https://www.sciencedirect.com/science/article/abs/pii/S0165242724001570? https://doi.org/10.1016/j.vetimm.2024.110871 |
identifier_str_mv |
1873-2534 (Online) 0165-2427 (Print) |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Veterinary Immunology and Immunopathology 280 : 110871 (February 2025) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341440131170304 |
score |
12.623145 |