Multi-Temporal analysis of remotely sensed information using wavelets
- Autores
- Campos, Alfredo Nicolas; Di Bella, Carlos Marcelo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Land cover changes (LCC) are an important component of Global Change. LCC can be described not only by its occur-rence, but also by the land cover replacement, causal agent and change duration or recuperation. Nowadays, remote sensing offers the opportunity to assemble reliable time series, however this fails to make a characterization of LCC since the series represents dynamics due to the combination of several processes occurring simultaneously. In this arti-cle we proposed an approach to the study of LCC using wavelet transform (WT) and MODIS vegetation time series. Through this work we have demonstrated the capacity of this tool in order to recognize and characterize four different LLC documented in scientific publications, presenting the results divided in frequency scales as interannual, seasonal and rapid changes. The information decomposed in frequency allows the interpretation of each involved process with-out the interference of others. The uses of WT in an image time series give us the possibility of joining temporal and spatial dimension in a single raster. Layers generated with WT might be used to pattern recognition in LCC and to im-prove an image classification.
Instituto de Clima y Agua
Fil: Campos, Alfredo Nicolas. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Buenos Aires. Departamento de Electrónica; Arentina
Fil: Di Bella, Carlos Marcelo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina - Fuente
- Journal of geographic information system 4 (4) :ID: 22158. (2012)
- Materia
-
Land Use
Vegetation
Remote Sensing
Moderate Resolution Imaging Spectroradiometer
Land Cover Change
Utilización de la Tierra
Vegetación
Teledetección
Espectrorradiómetro de Imágenes de Resolución Moderada
Alteración de la Cubierta Vegetal
Wavelet Transform
MODIS NDVI Series - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/4478
Ver los metadatos del registro completo
id |
INTADig_4d6e532b7100d6cef604623dc2e03212 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/4478 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Multi-Temporal analysis of remotely sensed information using waveletsCampos, Alfredo NicolasDi Bella, Carlos MarceloLand UseVegetationRemote SensingModerate Resolution Imaging SpectroradiometerLand Cover ChangeUtilización de la TierraVegetaciónTeledetecciónEspectrorradiómetro de Imágenes de Resolución ModeradaAlteración de la Cubierta VegetalWavelet TransformMODIS NDVI SeriesLand cover changes (LCC) are an important component of Global Change. LCC can be described not only by its occur-rence, but also by the land cover replacement, causal agent and change duration or recuperation. Nowadays, remote sensing offers the opportunity to assemble reliable time series, however this fails to make a characterization of LCC since the series represents dynamics due to the combination of several processes occurring simultaneously. In this arti-cle we proposed an approach to the study of LCC using wavelet transform (WT) and MODIS vegetation time series. Through this work we have demonstrated the capacity of this tool in order to recognize and characterize four different LLC documented in scientific publications, presenting the results divided in frequency scales as interannual, seasonal and rapid changes. The information decomposed in frequency allows the interpretation of each involved process with-out the interference of others. The uses of WT in an image time series give us the possibility of joining temporal and spatial dimension in a single raster. Layers generated with WT might be used to pattern recognition in LCC and to im-prove an image classification.Instituto de Clima y AguaFil: Campos, Alfredo Nicolas. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Buenos Aires. Departamento de Electrónica; ArentinaFil: Di Bella, Carlos Marcelo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; ArgentinaScientific Research Publishing2019-02-20T18:43:36Z2019-02-20T18:43:36Z2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/4478https://file.scirp.org/Html/11-8401156_22158.htm2151-19502151-1969 (Online)10.4236/jgis.2012.44044Journal of geographic information system 4 (4) :ID: 22158. (2012)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:44:34Zoai:localhost:20.500.12123/4478instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:35.086INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Multi-Temporal analysis of remotely sensed information using wavelets |
title |
Multi-Temporal analysis of remotely sensed information using wavelets |
spellingShingle |
Multi-Temporal analysis of remotely sensed information using wavelets Campos, Alfredo Nicolas Land Use Vegetation Remote Sensing Moderate Resolution Imaging Spectroradiometer Land Cover Change Utilización de la Tierra Vegetación Teledetección Espectrorradiómetro de Imágenes de Resolución Moderada Alteración de la Cubierta Vegetal Wavelet Transform MODIS NDVI Series |
title_short |
Multi-Temporal analysis of remotely sensed information using wavelets |
title_full |
Multi-Temporal analysis of remotely sensed information using wavelets |
title_fullStr |
Multi-Temporal analysis of remotely sensed information using wavelets |
title_full_unstemmed |
Multi-Temporal analysis of remotely sensed information using wavelets |
title_sort |
Multi-Temporal analysis of remotely sensed information using wavelets |
dc.creator.none.fl_str_mv |
Campos, Alfredo Nicolas Di Bella, Carlos Marcelo |
author |
Campos, Alfredo Nicolas |
author_facet |
Campos, Alfredo Nicolas Di Bella, Carlos Marcelo |
author_role |
author |
author2 |
Di Bella, Carlos Marcelo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Land Use Vegetation Remote Sensing Moderate Resolution Imaging Spectroradiometer Land Cover Change Utilización de la Tierra Vegetación Teledetección Espectrorradiómetro de Imágenes de Resolución Moderada Alteración de la Cubierta Vegetal Wavelet Transform MODIS NDVI Series |
topic |
Land Use Vegetation Remote Sensing Moderate Resolution Imaging Spectroradiometer Land Cover Change Utilización de la Tierra Vegetación Teledetección Espectrorradiómetro de Imágenes de Resolución Moderada Alteración de la Cubierta Vegetal Wavelet Transform MODIS NDVI Series |
dc.description.none.fl_txt_mv |
Land cover changes (LCC) are an important component of Global Change. LCC can be described not only by its occur-rence, but also by the land cover replacement, causal agent and change duration or recuperation. Nowadays, remote sensing offers the opportunity to assemble reliable time series, however this fails to make a characterization of LCC since the series represents dynamics due to the combination of several processes occurring simultaneously. In this arti-cle we proposed an approach to the study of LCC using wavelet transform (WT) and MODIS vegetation time series. Through this work we have demonstrated the capacity of this tool in order to recognize and characterize four different LLC documented in scientific publications, presenting the results divided in frequency scales as interannual, seasonal and rapid changes. The information decomposed in frequency allows the interpretation of each involved process with-out the interference of others. The uses of WT in an image time series give us the possibility of joining temporal and spatial dimension in a single raster. Layers generated with WT might be used to pattern recognition in LCC and to im-prove an image classification. Instituto de Clima y Agua Fil: Campos, Alfredo Nicolas. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Buenos Aires. Departamento de Electrónica; Arentina Fil: Di Bella, Carlos Marcelo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina |
description |
Land cover changes (LCC) are an important component of Global Change. LCC can be described not only by its occur-rence, but also by the land cover replacement, causal agent and change duration or recuperation. Nowadays, remote sensing offers the opportunity to assemble reliable time series, however this fails to make a characterization of LCC since the series represents dynamics due to the combination of several processes occurring simultaneously. In this arti-cle we proposed an approach to the study of LCC using wavelet transform (WT) and MODIS vegetation time series. Through this work we have demonstrated the capacity of this tool in order to recognize and characterize four different LLC documented in scientific publications, presenting the results divided in frequency scales as interannual, seasonal and rapid changes. The information decomposed in frequency allows the interpretation of each involved process with-out the interference of others. The uses of WT in an image time series give us the possibility of joining temporal and spatial dimension in a single raster. Layers generated with WT might be used to pattern recognition in LCC and to im-prove an image classification. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2019-02-20T18:43:36Z 2019-02-20T18:43:36Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/4478 https://file.scirp.org/Html/11-8401156_22158.htm 2151-1950 2151-1969 (Online) 10.4236/jgis.2012.44044 |
url |
http://hdl.handle.net/20.500.12123/4478 https://file.scirp.org/Html/11-8401156_22158.htm |
identifier_str_mv |
2151-1950 2151-1969 (Online) 10.4236/jgis.2012.44044 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Scientific Research Publishing |
publisher.none.fl_str_mv |
Scientific Research Publishing |
dc.source.none.fl_str_mv |
Journal of geographic information system 4 (4) :ID: 22158. (2012) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619130975551488 |
score |
12.559606 |