Modelling effective soil depth at field scale from soil sensors and geomorphometric indices
- Autores
- Castro Franco, Mauricio; Domenech, Marisa Beatriz; Costa, Jose Luis; Aparicio, Virginia Carolina
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The effective soil depth (ESD) affects both dynamic of hydrology and plant growth. In the southeast of Buenos Aires province, the presence of petrocalcic horizon constitutes a limitation to ESD. The aim of this study was to develop a statistic model to predict spatial patterns of ESD using apparent electrical conductivity at two depths: 0-30 (ECa_30) and 0-90 (ECa_90) and geomorphometric indices. To do this, a Random Forest (RF) analysis was applied. RF was able to select those variables according to their predictive potential for ESD. In that order, ECa_90, catchment slope, elevation and ECa_30 had main prediction importance. For validating purposes, 3035 ESD measurements were carried out, in five fields. ECa and ESD values showed complex spatial pattern at short distances. RF parameters with lowest error (OOBerror) were calibrated. RF model simplified which uses main predictors had a similar predictive development to it uses all predictors. Furthermore, RF model simplified had the ability to delineate similar pattern to those obtained from in situ measure of ESD in all fields. In general, RF was an effective method and easy to work. However, further studies are needed which add other types of variables importance calculation, greater number of fields and test other predictors in order to improve these results.
EEA Barrow
EEA Balcarce
Fil: Castro Franco, Mauricio. Universidad de los Llanos; Colombia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Domenech, Marisa Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Barrow; Argentina
Fil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Aparicio, Virginia Carolina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina - Fuente
- Acta Agronómica 66 (2) : 228-234. (2017)
- Materia
-
Suelo
Hidrología
Geomorfología
Soil
Hydrology
Geomorphology
Profundidad del Suelo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/2294
Ver los metadatos del registro completo
id |
INTADig_4b8a6366a12fff6660796c849329706e |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/2294 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Modelling effective soil depth at field scale from soil sensors and geomorphometric indicesCastro Franco, MauricioDomenech, Marisa BeatrizCosta, Jose LuisAparicio, Virginia CarolinaSueloHidrologíaGeomorfologíaSoilHydrologyGeomorphologyProfundidad del SueloThe effective soil depth (ESD) affects both dynamic of hydrology and plant growth. In the southeast of Buenos Aires province, the presence of petrocalcic horizon constitutes a limitation to ESD. The aim of this study was to develop a statistic model to predict spatial patterns of ESD using apparent electrical conductivity at two depths: 0-30 (ECa_30) and 0-90 (ECa_90) and geomorphometric indices. To do this, a Random Forest (RF) analysis was applied. RF was able to select those variables according to their predictive potential for ESD. In that order, ECa_90, catchment slope, elevation and ECa_30 had main prediction importance. For validating purposes, 3035 ESD measurements were carried out, in five fields. ECa and ESD values showed complex spatial pattern at short distances. RF parameters with lowest error (OOBerror) were calibrated. RF model simplified which uses main predictors had a similar predictive development to it uses all predictors. Furthermore, RF model simplified had the ability to delineate similar pattern to those obtained from in situ measure of ESD in all fields. In general, RF was an effective method and easy to work. However, further studies are needed which add other types of variables importance calculation, greater number of fields and test other predictors in order to improve these results.EEA BarrowEEA BalcarceFil: Castro Franco, Mauricio. Universidad de los Llanos; Colombia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Domenech, Marisa Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Barrow; ArgentinaFil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Aparicio, Virginia Carolina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina2018-04-27T14:30:42Z2018-04-27T14:30:42Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://revistas.unal.edu.co/index.php/acta_agronomica/article/view/53282/57810http://hdl.handle.net/20.500.12123/22940120-28122323-0118https://doi.org/10.15446/acag.v66n2.53282Acta Agronómica 66 (2) : 228-234. (2017)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:44:17Zoai:localhost:20.500.12123/2294instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:18.268INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Modelling effective soil depth at field scale from soil sensors and geomorphometric indices |
title |
Modelling effective soil depth at field scale from soil sensors and geomorphometric indices |
spellingShingle |
Modelling effective soil depth at field scale from soil sensors and geomorphometric indices Castro Franco, Mauricio Suelo Hidrología Geomorfología Soil Hydrology Geomorphology Profundidad del Suelo |
title_short |
Modelling effective soil depth at field scale from soil sensors and geomorphometric indices |
title_full |
Modelling effective soil depth at field scale from soil sensors and geomorphometric indices |
title_fullStr |
Modelling effective soil depth at field scale from soil sensors and geomorphometric indices |
title_full_unstemmed |
Modelling effective soil depth at field scale from soil sensors and geomorphometric indices |
title_sort |
Modelling effective soil depth at field scale from soil sensors and geomorphometric indices |
dc.creator.none.fl_str_mv |
Castro Franco, Mauricio Domenech, Marisa Beatriz Costa, Jose Luis Aparicio, Virginia Carolina |
author |
Castro Franco, Mauricio |
author_facet |
Castro Franco, Mauricio Domenech, Marisa Beatriz Costa, Jose Luis Aparicio, Virginia Carolina |
author_role |
author |
author2 |
Domenech, Marisa Beatriz Costa, Jose Luis Aparicio, Virginia Carolina |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Suelo Hidrología Geomorfología Soil Hydrology Geomorphology Profundidad del Suelo |
topic |
Suelo Hidrología Geomorfología Soil Hydrology Geomorphology Profundidad del Suelo |
dc.description.none.fl_txt_mv |
The effective soil depth (ESD) affects both dynamic of hydrology and plant growth. In the southeast of Buenos Aires province, the presence of petrocalcic horizon constitutes a limitation to ESD. The aim of this study was to develop a statistic model to predict spatial patterns of ESD using apparent electrical conductivity at two depths: 0-30 (ECa_30) and 0-90 (ECa_90) and geomorphometric indices. To do this, a Random Forest (RF) analysis was applied. RF was able to select those variables according to their predictive potential for ESD. In that order, ECa_90, catchment slope, elevation and ECa_30 had main prediction importance. For validating purposes, 3035 ESD measurements were carried out, in five fields. ECa and ESD values showed complex spatial pattern at short distances. RF parameters with lowest error (OOBerror) were calibrated. RF model simplified which uses main predictors had a similar predictive development to it uses all predictors. Furthermore, RF model simplified had the ability to delineate similar pattern to those obtained from in situ measure of ESD in all fields. In general, RF was an effective method and easy to work. However, further studies are needed which add other types of variables importance calculation, greater number of fields and test other predictors in order to improve these results. EEA Barrow EEA Balcarce Fil: Castro Franco, Mauricio. Universidad de los Llanos; Colombia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Domenech, Marisa Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Barrow; Argentina Fil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina Fil: Aparicio, Virginia Carolina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina |
description |
The effective soil depth (ESD) affects both dynamic of hydrology and plant growth. In the southeast of Buenos Aires province, the presence of petrocalcic horizon constitutes a limitation to ESD. The aim of this study was to develop a statistic model to predict spatial patterns of ESD using apparent electrical conductivity at two depths: 0-30 (ECa_30) and 0-90 (ECa_90) and geomorphometric indices. To do this, a Random Forest (RF) analysis was applied. RF was able to select those variables according to their predictive potential for ESD. In that order, ECa_90, catchment slope, elevation and ECa_30 had main prediction importance. For validating purposes, 3035 ESD measurements were carried out, in five fields. ECa and ESD values showed complex spatial pattern at short distances. RF parameters with lowest error (OOBerror) were calibrated. RF model simplified which uses main predictors had a similar predictive development to it uses all predictors. Furthermore, RF model simplified had the ability to delineate similar pattern to those obtained from in situ measure of ESD in all fields. In general, RF was an effective method and easy to work. However, further studies are needed which add other types of variables importance calculation, greater number of fields and test other predictors in order to improve these results. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2018-04-27T14:30:42Z 2018-04-27T14:30:42Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/53282/57810 http://hdl.handle.net/20.500.12123/2294 0120-2812 2323-0118 https://doi.org/10.15446/acag.v66n2.53282 |
url |
https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/53282/57810 http://hdl.handle.net/20.500.12123/2294 https://doi.org/10.15446/acag.v66n2.53282 |
identifier_str_mv |
0120-2812 2323-0118 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Acta Agronómica 66 (2) : 228-234. (2017) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619121613864960 |
score |
12.559606 |