Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster

Autores
Rolandi, Carmen; Lighton, John R.B.; De La Vega, Gerardo; Schilman, Pablo Ernesto; Mensch, Julián
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this work, we studied the genetic basis of tolerance to high temperatures in the fly Drosophila melanogaster and whether this species presents sufficient genetic variability to allow expansion of its upper thermo-tolerance limit. To do so, we used adult flies derived from a natural population belonging to the Drosophila Genetic Reference Panel, for which genomic sequencing data are available. We characterized the phenotypic variation of the upper thermal limit in 34 lines by measuring knockdown temperature (i.e., critical thermal maximum [CTmax]) by exposing flies to a ramp of increasing temperature (0.25°C/min). Fourteen percent of the variation in CTmax is explained by the genetic variation across lines, without a significant sexual dimorphism. Through a genomewide association study, 12 single nucleotide polymorphisms associated with the CTmax were identified. In most of these SNPs, the less frequent allele increased the upper thermal limit suggesting that this population harbors raw genetic variation capable of expanding its heat tolerance. This potential upper thermal tolerance increase has implications under the global warming scenario. Past climatic records show a very low incidence of days above CTmax (10 days over 25 years); however, future climate scenarios predict 243 days with extreme high temperature above CTmax from 2045 to 2070. Thus, in the context of the future climate warming, rising temperatures might drive the evolution of heat tolerance in this population by increasing the frequency of the alleles associated with higher CTmax.
Estación Experimental Agropecuaria Bariloche
Fil: Rolandi, Carmen. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Lighton, John R. Sable Systems International; Estados Unidos
Fil: De la Vega, Gerardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Schilman, Pablo Ernesto. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Mensch, Julián. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fuente
Ecology and Evolution 8 (20) : 1-10 (2018)
Materia
Drosophila
Variación Genética
Cambio Climático
Genetic Variation
Climate Change
Temperature
Heat Tolerance
Drosophila melanogaster
Temperatura
Tolerancia al Calor
Moscas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/3860

id INTADig_4349d820e300592fe624a80b91cf8c19
oai_identifier_str oai:localhost:20.500.12123/3860
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Genetic variation for tolerance to high temperatures in a population of Drosophila melanogasterRolandi, CarmenLighton, John R.B.De La Vega, GerardoSchilman, Pablo ErnestoMensch, JuliánDrosophilaVariación GenéticaCambio ClimáticoGenetic VariationClimate ChangeTemperatureHeat ToleranceDrosophila melanogasterTemperaturaTolerancia al CalorMoscasThe range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this work, we studied the genetic basis of tolerance to high temperatures in the fly Drosophila melanogaster and whether this species presents sufficient genetic variability to allow expansion of its upper thermo-tolerance limit. To do so, we used adult flies derived from a natural population belonging to the Drosophila Genetic Reference Panel, for which genomic sequencing data are available. We characterized the phenotypic variation of the upper thermal limit in 34 lines by measuring knockdown temperature (i.e., critical thermal maximum [CTmax]) by exposing flies to a ramp of increasing temperature (0.25°C/min). Fourteen percent of the variation in CTmax is explained by the genetic variation across lines, without a significant sexual dimorphism. Through a genomewide association study, 12 single nucleotide polymorphisms associated with the CTmax were identified. In most of these SNPs, the less frequent allele increased the upper thermal limit suggesting that this population harbors raw genetic variation capable of expanding its heat tolerance. This potential upper thermal tolerance increase has implications under the global warming scenario. Past climatic records show a very low incidence of days above CTmax (10 days over 25 years); however, future climate scenarios predict 243 days with extreme high temperature above CTmax from 2045 to 2070. Thus, in the context of the future climate warming, rising temperatures might drive the evolution of heat tolerance in this population by increasing the frequency of the alleles associated with higher CTmax.Estación Experimental Agropecuaria BarilocheFil: Rolandi, Carmen. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Lighton, John R. Sable Systems International; Estados UnidosFil: De la Vega, Gerardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Schilman, Pablo Ernesto. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Mensch, Julián. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaJohn Wiley & Sons Ltd2018-11-12T12:26:47Z2018-11-12T12:26:47Z2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/3860https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.44092045-7758https://doi.org/10.1002/ece3.4409Ecology and Evolution 8 (20) : 1-10 (2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-18T10:07:22Zoai:localhost:20.500.12123/3860instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-18 10:07:23.235INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster
title Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster
spellingShingle Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster
Rolandi, Carmen
Drosophila
Variación Genética
Cambio Climático
Genetic Variation
Climate Change
Temperature
Heat Tolerance
Drosophila melanogaster
Temperatura
Tolerancia al Calor
Moscas
title_short Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster
title_full Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster
title_fullStr Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster
title_full_unstemmed Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster
title_sort Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster
dc.creator.none.fl_str_mv Rolandi, Carmen
Lighton, John R.B.
De La Vega, Gerardo
Schilman, Pablo Ernesto
Mensch, Julián
author Rolandi, Carmen
author_facet Rolandi, Carmen
Lighton, John R.B.
De La Vega, Gerardo
Schilman, Pablo Ernesto
Mensch, Julián
author_role author
author2 Lighton, John R.B.
De La Vega, Gerardo
Schilman, Pablo Ernesto
Mensch, Julián
author2_role author
author
author
author
dc.subject.none.fl_str_mv Drosophila
Variación Genética
Cambio Climático
Genetic Variation
Climate Change
Temperature
Heat Tolerance
Drosophila melanogaster
Temperatura
Tolerancia al Calor
Moscas
topic Drosophila
Variación Genética
Cambio Climático
Genetic Variation
Climate Change
Temperature
Heat Tolerance
Drosophila melanogaster
Temperatura
Tolerancia al Calor
Moscas
dc.description.none.fl_txt_mv The range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this work, we studied the genetic basis of tolerance to high temperatures in the fly Drosophila melanogaster and whether this species presents sufficient genetic variability to allow expansion of its upper thermo-tolerance limit. To do so, we used adult flies derived from a natural population belonging to the Drosophila Genetic Reference Panel, for which genomic sequencing data are available. We characterized the phenotypic variation of the upper thermal limit in 34 lines by measuring knockdown temperature (i.e., critical thermal maximum [CTmax]) by exposing flies to a ramp of increasing temperature (0.25°C/min). Fourteen percent of the variation in CTmax is explained by the genetic variation across lines, without a significant sexual dimorphism. Through a genomewide association study, 12 single nucleotide polymorphisms associated with the CTmax were identified. In most of these SNPs, the less frequent allele increased the upper thermal limit suggesting that this population harbors raw genetic variation capable of expanding its heat tolerance. This potential upper thermal tolerance increase has implications under the global warming scenario. Past climatic records show a very low incidence of days above CTmax (10 days over 25 years); however, future climate scenarios predict 243 days with extreme high temperature above CTmax from 2045 to 2070. Thus, in the context of the future climate warming, rising temperatures might drive the evolution of heat tolerance in this population by increasing the frequency of the alleles associated with higher CTmax.
Estación Experimental Agropecuaria Bariloche
Fil: Rolandi, Carmen. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Lighton, John R. Sable Systems International; Estados Unidos
Fil: De la Vega, Gerardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Schilman, Pablo Ernesto. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Mensch, Julián. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
description The range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this work, we studied the genetic basis of tolerance to high temperatures in the fly Drosophila melanogaster and whether this species presents sufficient genetic variability to allow expansion of its upper thermo-tolerance limit. To do so, we used adult flies derived from a natural population belonging to the Drosophila Genetic Reference Panel, for which genomic sequencing data are available. We characterized the phenotypic variation of the upper thermal limit in 34 lines by measuring knockdown temperature (i.e., critical thermal maximum [CTmax]) by exposing flies to a ramp of increasing temperature (0.25°C/min). Fourteen percent of the variation in CTmax is explained by the genetic variation across lines, without a significant sexual dimorphism. Through a genomewide association study, 12 single nucleotide polymorphisms associated with the CTmax were identified. In most of these SNPs, the less frequent allele increased the upper thermal limit suggesting that this population harbors raw genetic variation capable of expanding its heat tolerance. This potential upper thermal tolerance increase has implications under the global warming scenario. Past climatic records show a very low incidence of days above CTmax (10 days over 25 years); however, future climate scenarios predict 243 days with extreme high temperature above CTmax from 2045 to 2070. Thus, in the context of the future climate warming, rising temperatures might drive the evolution of heat tolerance in this population by increasing the frequency of the alleles associated with higher CTmax.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-12T12:26:47Z
2018-11-12T12:26:47Z
2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/3860
https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4409
2045-7758
https://doi.org/10.1002/ece3.4409
url http://hdl.handle.net/20.500.12123/3860
https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4409
https://doi.org/10.1002/ece3.4409
identifier_str_mv 2045-7758
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv Ecology and Evolution 8 (20) : 1-10 (2018)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1843609173126807552
score 13.001348