Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster
- Autores
- Rolandi, Carmen; Lighton, John R.B.; De La Vega, Gerardo; Schilman, Pablo Ernesto; Mensch, Julián
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this work, we studied the genetic basis of tolerance to high temperatures in the fly Drosophila melanogaster and whether this species presents sufficient genetic variability to allow expansion of its upper thermo-tolerance limit. To do so, we used adult flies derived from a natural population belonging to the Drosophila Genetic Reference Panel, for which genomic sequencing data are available. We characterized the phenotypic variation of the upper thermal limit in 34 lines by measuring knockdown temperature (i.e., critical thermal maximum [CTmax]) by exposing flies to a ramp of increasing temperature (0.25°C/min). Fourteen percent of the variation in CTmax is explained by the genetic variation across lines, without a significant sexual dimorphism. Through a genomewide association study, 12 single nucleotide polymorphisms associated with the CTmax were identified. In most of these SNPs, the less frequent allele increased the upper thermal limit suggesting that this population harbors raw genetic variation capable of expanding its heat tolerance. This potential upper thermal tolerance increase has implications under the global warming scenario. Past climatic records show a very low incidence of days above CTmax (10 days over 25 years); however, future climate scenarios predict 243 days with extreme high temperature above CTmax from 2045 to 2070. Thus, in the context of the future climate warming, rising temperatures might drive the evolution of heat tolerance in this population by increasing the frequency of the alleles associated with higher CTmax.
Estación Experimental Agropecuaria Bariloche
Fil: Rolandi, Carmen. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Lighton, John R. Sable Systems International; Estados Unidos
Fil: De la Vega, Gerardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Schilman, Pablo Ernesto. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Mensch, Julián. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina - Fuente
- Ecology and Evolution 8 (20) : 1-10 (2018)
- Materia
-
Drosophila
Variación Genética
Cambio Climático
Genetic Variation
Climate Change
Temperature
Heat Tolerance
Drosophila melanogaster
Temperatura
Tolerancia al Calor
Moscas - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/3860
Ver los metadatos del registro completo
id |
INTADig_4349d820e300592fe624a80b91cf8c19 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/3860 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Genetic variation for tolerance to high temperatures in a population of Drosophila melanogasterRolandi, CarmenLighton, John R.B.De La Vega, GerardoSchilman, Pablo ErnestoMensch, JuliánDrosophilaVariación GenéticaCambio ClimáticoGenetic VariationClimate ChangeTemperatureHeat ToleranceDrosophila melanogasterTemperaturaTolerancia al CalorMoscasThe range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this work, we studied the genetic basis of tolerance to high temperatures in the fly Drosophila melanogaster and whether this species presents sufficient genetic variability to allow expansion of its upper thermo-tolerance limit. To do so, we used adult flies derived from a natural population belonging to the Drosophila Genetic Reference Panel, for which genomic sequencing data are available. We characterized the phenotypic variation of the upper thermal limit in 34 lines by measuring knockdown temperature (i.e., critical thermal maximum [CTmax]) by exposing flies to a ramp of increasing temperature (0.25°C/min). Fourteen percent of the variation in CTmax is explained by the genetic variation across lines, without a significant sexual dimorphism. Through a genomewide association study, 12 single nucleotide polymorphisms associated with the CTmax were identified. In most of these SNPs, the less frequent allele increased the upper thermal limit suggesting that this population harbors raw genetic variation capable of expanding its heat tolerance. This potential upper thermal tolerance increase has implications under the global warming scenario. Past climatic records show a very low incidence of days above CTmax (10 days over 25 years); however, future climate scenarios predict 243 days with extreme high temperature above CTmax from 2045 to 2070. Thus, in the context of the future climate warming, rising temperatures might drive the evolution of heat tolerance in this population by increasing the frequency of the alleles associated with higher CTmax.Estación Experimental Agropecuaria BarilocheFil: Rolandi, Carmen. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Lighton, John R. Sable Systems International; Estados UnidosFil: De la Vega, Gerardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Schilman, Pablo Ernesto. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Mensch, Julián. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaJohn Wiley & Sons Ltd2018-11-12T12:26:47Z2018-11-12T12:26:47Z2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/3860https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.44092045-7758https://doi.org/10.1002/ece3.4409Ecology and Evolution 8 (20) : 1-10 (2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-18T10:07:22Zoai:localhost:20.500.12123/3860instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-18 10:07:23.235INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster |
title |
Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster |
spellingShingle |
Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster Rolandi, Carmen Drosophila Variación Genética Cambio Climático Genetic Variation Climate Change Temperature Heat Tolerance Drosophila melanogaster Temperatura Tolerancia al Calor Moscas |
title_short |
Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster |
title_full |
Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster |
title_fullStr |
Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster |
title_full_unstemmed |
Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster |
title_sort |
Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster |
dc.creator.none.fl_str_mv |
Rolandi, Carmen Lighton, John R.B. De La Vega, Gerardo Schilman, Pablo Ernesto Mensch, Julián |
author |
Rolandi, Carmen |
author_facet |
Rolandi, Carmen Lighton, John R.B. De La Vega, Gerardo Schilman, Pablo Ernesto Mensch, Julián |
author_role |
author |
author2 |
Lighton, John R.B. De La Vega, Gerardo Schilman, Pablo Ernesto Mensch, Julián |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Drosophila Variación Genética Cambio Climático Genetic Variation Climate Change Temperature Heat Tolerance Drosophila melanogaster Temperatura Tolerancia al Calor Moscas |
topic |
Drosophila Variación Genética Cambio Climático Genetic Variation Climate Change Temperature Heat Tolerance Drosophila melanogaster Temperatura Tolerancia al Calor Moscas |
dc.description.none.fl_txt_mv |
The range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this work, we studied the genetic basis of tolerance to high temperatures in the fly Drosophila melanogaster and whether this species presents sufficient genetic variability to allow expansion of its upper thermo-tolerance limit. To do so, we used adult flies derived from a natural population belonging to the Drosophila Genetic Reference Panel, for which genomic sequencing data are available. We characterized the phenotypic variation of the upper thermal limit in 34 lines by measuring knockdown temperature (i.e., critical thermal maximum [CTmax]) by exposing flies to a ramp of increasing temperature (0.25°C/min). Fourteen percent of the variation in CTmax is explained by the genetic variation across lines, without a significant sexual dimorphism. Through a genomewide association study, 12 single nucleotide polymorphisms associated with the CTmax were identified. In most of these SNPs, the less frequent allele increased the upper thermal limit suggesting that this population harbors raw genetic variation capable of expanding its heat tolerance. This potential upper thermal tolerance increase has implications under the global warming scenario. Past climatic records show a very low incidence of days above CTmax (10 days over 25 years); however, future climate scenarios predict 243 days with extreme high temperature above CTmax from 2045 to 2070. Thus, in the context of the future climate warming, rising temperatures might drive the evolution of heat tolerance in this population by increasing the frequency of the alleles associated with higher CTmax. Estación Experimental Agropecuaria Bariloche Fil: Rolandi, Carmen. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Lighton, John R. Sable Systems International; Estados Unidos Fil: De la Vega, Gerardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentina Fil: Schilman, Pablo Ernesto. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Mensch, Julián. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina |
description |
The range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this work, we studied the genetic basis of tolerance to high temperatures in the fly Drosophila melanogaster and whether this species presents sufficient genetic variability to allow expansion of its upper thermo-tolerance limit. To do so, we used adult flies derived from a natural population belonging to the Drosophila Genetic Reference Panel, for which genomic sequencing data are available. We characterized the phenotypic variation of the upper thermal limit in 34 lines by measuring knockdown temperature (i.e., critical thermal maximum [CTmax]) by exposing flies to a ramp of increasing temperature (0.25°C/min). Fourteen percent of the variation in CTmax is explained by the genetic variation across lines, without a significant sexual dimorphism. Through a genomewide association study, 12 single nucleotide polymorphisms associated with the CTmax were identified. In most of these SNPs, the less frequent allele increased the upper thermal limit suggesting that this population harbors raw genetic variation capable of expanding its heat tolerance. This potential upper thermal tolerance increase has implications under the global warming scenario. Past climatic records show a very low incidence of days above CTmax (10 days over 25 years); however, future climate scenarios predict 243 days with extreme high temperature above CTmax from 2045 to 2070. Thus, in the context of the future climate warming, rising temperatures might drive the evolution of heat tolerance in this population by increasing the frequency of the alleles associated with higher CTmax. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-12T12:26:47Z 2018-11-12T12:26:47Z 2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/3860 https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4409 2045-7758 https://doi.org/10.1002/ece3.4409 |
url |
http://hdl.handle.net/20.500.12123/3860 https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4409 https://doi.org/10.1002/ece3.4409 |
identifier_str_mv |
2045-7758 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
Ecology and Evolution 8 (20) : 1-10 (2018) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1843609173126807552 |
score |
13.001348 |