Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina
- Autores
- Filip, Iván Daniel; Peri, Pablo Luis; Banegas, Natalia Romina; Nasca, Jose Andres; Sacido, Mónica; Faverin, Claudia; Vibart, Ronaldo
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Soil organic carbon (SOC) stocks play an important role in ecosystem functioning and climate regulation. These stocks are declining in many tropical dry forests due to land-use change and degradation. Data on topsoil (0–300 mm) organic C stocks from six experiments conducted in the Dry Chaco region, the world’s largest dry tropical forest, were used to test the predictive performance of the Rothamsted Carbon Model (RothC) after its implementation in an object-oriented graphical programming language. RothC provided promising predictions (i.e., precise and accurate) of the SOC stocks under two representative land covers in the region, native forest and Rhodes grass [relative prediction error (RPE) < 10%, concordance correlation coefficient (CCC) > 0.9, modelling efficiency (MEF) > 0.7]. Comparatively, model predictions of the SOC stocks under degraded Rhodes grass swards were suboptimal. The predictions were sensitive to C inputs; under native forests and Rhodes grass, a high C input improved the predictive performance of the model by reducing the mean bias and increasing the MEF values, compared with mean and low C inputs. Larger datasets and revisiting some of the underlying assumptions in the SOC modelling will be required to improve the model’s performance, particularly under the degraded Rhodes grass land cover.
EEA Las Breñas
Fil: Filip, Iván Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Transferencia Formosa; Argentina
Fil: Filip, Iván Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Las Breñas; Argentina
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.
Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Banegas, Natalia Romina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Animal del Chaco Semiárido; Argentina
Fil: Banegas, Natalia Romina. Universidad Nacional de Tucumán. Facultad de Agronomía, Zootecnia y Veterinaria; Argentina
Fil: Nasca, Jose Andres. Terratio; Argentina
Fil: Sacido, Mónica. Investigadora independientes; Argentina
Fil: Faverin, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Faverin, Claudia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Vibart, Ronaldo. AgResearch. Grasslands Research Centre; Nueva Zelanda - Fuente
- Sustainability 17 (11) : 5012 (June 2025)
- Materia
-
Carbono Orgánico del Suelo
Bosques
Bosque Primario
Praderas
Estimación de las Existencias de Carbono
Soil Organic Carbon
Forests
Primary Forests
Grasslands
Carbon Stock Assessments
Bosque Nativo
Región Chaqueña, Argentina
Chaco Seco - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/22478
Ver los metadatos del registro completo
id |
INTADig_2aa06c096a8aada84b749cb5ae4bc5c7 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/22478 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of ArgentinaFilip, Iván DanielPeri, Pablo LuisBanegas, Natalia RominaNasca, Jose AndresSacido, MónicaFaverin, ClaudiaVibart, RonaldoCarbono Orgánico del SueloBosquesBosque PrimarioPraderasEstimación de las Existencias de CarbonoSoil Organic CarbonForestsPrimary ForestsGrasslandsCarbon Stock AssessmentsBosque NativoRegión Chaqueña, ArgentinaChaco SecoSoil organic carbon (SOC) stocks play an important role in ecosystem functioning and climate regulation. These stocks are declining in many tropical dry forests due to land-use change and degradation. Data on topsoil (0–300 mm) organic C stocks from six experiments conducted in the Dry Chaco region, the world’s largest dry tropical forest, were used to test the predictive performance of the Rothamsted Carbon Model (RothC) after its implementation in an object-oriented graphical programming language. RothC provided promising predictions (i.e., precise and accurate) of the SOC stocks under two representative land covers in the region, native forest and Rhodes grass [relative prediction error (RPE) < 10%, concordance correlation coefficient (CCC) > 0.9, modelling efficiency (MEF) > 0.7]. Comparatively, model predictions of the SOC stocks under degraded Rhodes grass swards were suboptimal. The predictions were sensitive to C inputs; under native forests and Rhodes grass, a high C input improved the predictive performance of the model by reducing the mean bias and increasing the MEF values, compared with mean and low C inputs. Larger datasets and revisiting some of the underlying assumptions in the SOC modelling will be required to improve the model’s performance, particularly under the degraded Rhodes grass land cover.EEA Las BreñasFil: Filip, Iván Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Transferencia Formosa; ArgentinaFil: Filip, Iván Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Las Breñas; ArgentinaFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Banegas, Natalia Romina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Animal del Chaco Semiárido; ArgentinaFil: Banegas, Natalia Romina. Universidad Nacional de Tucumán. Facultad de Agronomía, Zootecnia y Veterinaria; ArgentinaFil: Nasca, Jose Andres. Terratio; ArgentinaFil: Sacido, Mónica. Investigadora independientes; ArgentinaFil: Faverin, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Faverin, Claudia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Vibart, Ronaldo. AgResearch. Grasslands Research Centre; Nueva ZelandaMDPI2025-06-04T10:39:33Z2025-06-04T10:39:33Z2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/22478https://www.mdpi.com/2071-1050/17/11/50122071-1050https://doi.org/10.3390/su17115012Sustainability 17 (11) : 5012 (June 2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2019-PD-E3-I062-001, Estrategias de producción que incrementen el secuestro de C en suelo para la mitigación del Cambio Climáticoinfo:eu-repograntAgreement/INTA/2019-PE-E1-I006-001, Respuestas tecnológicas para el manejo sustentable y eficiente de pasturas megatérmicas en sistemas ganaderos del norte y centro de Argentinainfo:eu-repograntAgreement/INTA/2023-PD-L02-I097, Emisiones de gases de efecto invernadero y captura de carbono en sistemas agropecuarios y forestalesinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:51:05Zoai:localhost:20.500.12123/22478instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:51:05.913INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina |
title |
Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina |
spellingShingle |
Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina Filip, Iván Daniel Carbono Orgánico del Suelo Bosques Bosque Primario Praderas Estimación de las Existencias de Carbono Soil Organic Carbon Forests Primary Forests Grasslands Carbon Stock Assessments Bosque Nativo Región Chaqueña, Argentina Chaco Seco |
title_short |
Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina |
title_full |
Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina |
title_fullStr |
Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina |
title_full_unstemmed |
Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina |
title_sort |
Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina |
dc.creator.none.fl_str_mv |
Filip, Iván Daniel Peri, Pablo Luis Banegas, Natalia Romina Nasca, Jose Andres Sacido, Mónica Faverin, Claudia Vibart, Ronaldo |
author |
Filip, Iván Daniel |
author_facet |
Filip, Iván Daniel Peri, Pablo Luis Banegas, Natalia Romina Nasca, Jose Andres Sacido, Mónica Faverin, Claudia Vibart, Ronaldo |
author_role |
author |
author2 |
Peri, Pablo Luis Banegas, Natalia Romina Nasca, Jose Andres Sacido, Mónica Faverin, Claudia Vibart, Ronaldo |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Carbono Orgánico del Suelo Bosques Bosque Primario Praderas Estimación de las Existencias de Carbono Soil Organic Carbon Forests Primary Forests Grasslands Carbon Stock Assessments Bosque Nativo Región Chaqueña, Argentina Chaco Seco |
topic |
Carbono Orgánico del Suelo Bosques Bosque Primario Praderas Estimación de las Existencias de Carbono Soil Organic Carbon Forests Primary Forests Grasslands Carbon Stock Assessments Bosque Nativo Región Chaqueña, Argentina Chaco Seco |
dc.description.none.fl_txt_mv |
Soil organic carbon (SOC) stocks play an important role in ecosystem functioning and climate regulation. These stocks are declining in many tropical dry forests due to land-use change and degradation. Data on topsoil (0–300 mm) organic C stocks from six experiments conducted in the Dry Chaco region, the world’s largest dry tropical forest, were used to test the predictive performance of the Rothamsted Carbon Model (RothC) after its implementation in an object-oriented graphical programming language. RothC provided promising predictions (i.e., precise and accurate) of the SOC stocks under two representative land covers in the region, native forest and Rhodes grass [relative prediction error (RPE) < 10%, concordance correlation coefficient (CCC) > 0.9, modelling efficiency (MEF) > 0.7]. Comparatively, model predictions of the SOC stocks under degraded Rhodes grass swards were suboptimal. The predictions were sensitive to C inputs; under native forests and Rhodes grass, a high C input improved the predictive performance of the model by reducing the mean bias and increasing the MEF values, compared with mean and low C inputs. Larger datasets and revisiting some of the underlying assumptions in the SOC modelling will be required to improve the model’s performance, particularly under the degraded Rhodes grass land cover. EEA Las Breñas Fil: Filip, Iván Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Transferencia Formosa; Argentina Fil: Filip, Iván Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Las Breñas; Argentina Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Banegas, Natalia Romina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Animal del Chaco Semiárido; Argentina Fil: Banegas, Natalia Romina. Universidad Nacional de Tucumán. Facultad de Agronomía, Zootecnia y Veterinaria; Argentina Fil: Nasca, Jose Andres. Terratio; Argentina Fil: Sacido, Mónica. Investigadora independientes; Argentina Fil: Faverin, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina Fil: Faverin, Claudia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Vibart, Ronaldo. AgResearch. Grasslands Research Centre; Nueva Zelanda |
description |
Soil organic carbon (SOC) stocks play an important role in ecosystem functioning and climate regulation. These stocks are declining in many tropical dry forests due to land-use change and degradation. Data on topsoil (0–300 mm) organic C stocks from six experiments conducted in the Dry Chaco region, the world’s largest dry tropical forest, were used to test the predictive performance of the Rothamsted Carbon Model (RothC) after its implementation in an object-oriented graphical programming language. RothC provided promising predictions (i.e., precise and accurate) of the SOC stocks under two representative land covers in the region, native forest and Rhodes grass [relative prediction error (RPE) < 10%, concordance correlation coefficient (CCC) > 0.9, modelling efficiency (MEF) > 0.7]. Comparatively, model predictions of the SOC stocks under degraded Rhodes grass swards were suboptimal. The predictions were sensitive to C inputs; under native forests and Rhodes grass, a high C input improved the predictive performance of the model by reducing the mean bias and increasing the MEF values, compared with mean and low C inputs. Larger datasets and revisiting some of the underlying assumptions in the SOC modelling will be required to improve the model’s performance, particularly under the degraded Rhodes grass land cover. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06-04T10:39:33Z 2025-06-04T10:39:33Z 2025-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/22478 https://www.mdpi.com/2071-1050/17/11/5012 2071-1050 https://doi.org/10.3390/su17115012 |
url |
http://hdl.handle.net/20.500.12123/22478 https://www.mdpi.com/2071-1050/17/11/5012 https://doi.org/10.3390/su17115012 |
identifier_str_mv |
2071-1050 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/2019-PD-E3-I062-001, Estrategias de producción que incrementen el secuestro de C en suelo para la mitigación del Cambio Climático info:eu-repograntAgreement/INTA/2019-PE-E1-I006-001, Respuestas tecnológicas para el manejo sustentable y eficiente de pasturas megatérmicas en sistemas ganaderos del norte y centro de Argentina info:eu-repograntAgreement/INTA/2023-PD-L02-I097, Emisiones de gases de efecto invernadero y captura de carbono en sistemas agropecuarios y forestales |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Sustainability 17 (11) : 5012 (June 2025) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341440803307520 |
score |
12.623145 |