Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally
- Autores
- Arnillas, Carlos Alberto; Borer, Elizabeth T.; Seabloom, Eric William; Alberti, Juan; Baez, Selene; Bakker, Jonathan D.; Boughton, Elizabeth H.; Buckley, Yvonne M. ; Bugalho, Miguel Nuno; Donohue, Ian; Dwyer, John; Firn, Jennifer; Peri, Pablo Luis; Cadotte, Marc W.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.
EEA Santa Cruz
Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough. Department of Physical and Environmental Sciences; Canadá.
Fil: Borer, Elizabeth T. University of Minnesota; Estados Unidos
Fil: Seabloom, Eric W. University of Minnesota; Estados Unidos
Fil: Alberti, Juan. Universidad Nacional de Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras; Argentina.
Fil: Baez, Selene. Escuela Politécnica Nacional. Department of Biology; Ecuador.
Fil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados Unidos
Fil: Boughton, Elizabeth H. Archbold Biological Station. Venus, Florida; Estados Unidos
Fil: Buckley, Yvonne M. Trinity College Dublin. School of Natural Sciences, Zoology; Irlanda
Fil: Bugalho, Miguel Nuno. University of Lisbon. Centre for Applied Ecology Prof. Baeta Neves (CEABN-InBIO). School of Agriculture; Portugal.
Fil: Donohue, Ian. Trinity College Dublin. School of Natural Sciences, Zoology; Irlanda
Fil: Dwyer, John. University of Queensland. School of Biological Sciences; Australia.
Fil: Firn, Jennifer. Queensland University of Technology (QUT); Australia.
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.
Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Cadotte, Marc W. University of Toronto Scarborough. Department of Biological Sciences; Canadá.
Fil: Cadotte, Marc W. University of Toronto. Department of Ecology and Evolutionary Biology; Canadá. - Fuente
- Ecology and Evolution 11 (24) : 17744-17761 (December 2021)
- Materia
-
Pastures
Phylogeny
Dominant Species
Abiotic Factors
Biotic Factors
Nutrients
Pastizales
Filogenia
Especies Dominantes
Factores Abióticos
Factores Bióticos
Nutrientes
Community Assembly Patterns
Patrones de Ensable de Comunidades - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/11052
Ver los metadatos del registro completo
id |
INTADig_219c8aa474859581e2c69c37916313d1 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/11052 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globallyArnillas, Carlos AlbertoBorer, Elizabeth T.Seabloom, Eric WilliamAlberti, JuanBaez, SeleneBakker, Jonathan D.Boughton, Elizabeth H.Buckley, Yvonne M. Bugalho, Miguel NunoDonohue, IanDwyer, JohnFirn, JenniferPeri, Pablo LuisCadotte, Marc W.PasturesPhylogenyDominant SpeciesAbiotic FactorsBiotic FactorsNutrientsPastizalesFilogeniaEspecies DominantesFactores AbióticosFactores BióticosNutrientesCommunity Assembly PatternsPatrones de Ensable de ComunidadesBiotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.EEA Santa CruzFil: Arnillas, Carlos Alberto. University of Toronto Scarborough. Department of Physical and Environmental Sciences; Canadá.Fil: Borer, Elizabeth T. University of Minnesota; Estados UnidosFil: Seabloom, Eric W. University of Minnesota; Estados UnidosFil: Alberti, Juan. Universidad Nacional de Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras; Argentina.Fil: Baez, Selene. Escuela Politécnica Nacional. Department of Biology; Ecuador.Fil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados UnidosFil: Boughton, Elizabeth H. Archbold Biological Station. Venus, Florida; Estados UnidosFil: Buckley, Yvonne M. Trinity College Dublin. School of Natural Sciences, Zoology; IrlandaFil: Bugalho, Miguel Nuno. University of Lisbon. Centre for Applied Ecology Prof. Baeta Neves (CEABN-InBIO). School of Agriculture; Portugal.Fil: Donohue, Ian. Trinity College Dublin. School of Natural Sciences, Zoology; IrlandaFil: Dwyer, John. University of Queensland. School of Biological Sciences; Australia.Fil: Firn, Jennifer. Queensland University of Technology (QUT); Australia.Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Cadotte, Marc W. University of Toronto Scarborough. Department of Biological Sciences; Canadá.Fil: Cadotte, Marc W. University of Toronto. Department of Ecology and Evolutionary Biology; Canadá.Wiley Ecology and evolution2022-01-05T10:24:38Z2022-01-05T10:24:38Z2021-11-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/11052https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.8266Arenillas C.A.;Borer, E.; Seabloom E.; Alberti J.; Baez S.; Bakker J.; Boughton E.; Buckley Y.; Bugalho M.; Donohue I.; Dwyer J.; Firn J.; Gridzak R.; Hagenah N.; Hautier Y.; Helm A.; Jentsch A.; Knops J.; Komatsu K.J.; Laanisto L.; Laungani R.; Mcculley R.; Moore J.; Morgan J.; Peri P.L.; Power S.; Price J.; Sankaran M.; Schamp B.; Speziale K.; Standish R.; Virtanen R. Cadotte M. Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally. Ecology and Evolution 11(24): 17744-17761.2045-7758https://doi.org/10.1002/ece3.8266Ecology and Evolution 11 (24) : 17744-17761 (December 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:30:20Zoai:localhost:20.500.12123/11052instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:30:21.538INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally |
title |
Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally |
spellingShingle |
Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally Arnillas, Carlos Alberto Pastures Phylogeny Dominant Species Abiotic Factors Biotic Factors Nutrients Pastizales Filogenia Especies Dominantes Factores Abióticos Factores Bióticos Nutrientes Community Assembly Patterns Patrones de Ensable de Comunidades |
title_short |
Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally |
title_full |
Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally |
title_fullStr |
Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally |
title_full_unstemmed |
Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally |
title_sort |
Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally |
dc.creator.none.fl_str_mv |
Arnillas, Carlos Alberto Borer, Elizabeth T. Seabloom, Eric William Alberti, Juan Baez, Selene Bakker, Jonathan D. Boughton, Elizabeth H. Buckley, Yvonne M. Bugalho, Miguel Nuno Donohue, Ian Dwyer, John Firn, Jennifer Peri, Pablo Luis Cadotte, Marc W. |
author |
Arnillas, Carlos Alberto |
author_facet |
Arnillas, Carlos Alberto Borer, Elizabeth T. Seabloom, Eric William Alberti, Juan Baez, Selene Bakker, Jonathan D. Boughton, Elizabeth H. Buckley, Yvonne M. Bugalho, Miguel Nuno Donohue, Ian Dwyer, John Firn, Jennifer Peri, Pablo Luis Cadotte, Marc W. |
author_role |
author |
author2 |
Borer, Elizabeth T. Seabloom, Eric William Alberti, Juan Baez, Selene Bakker, Jonathan D. Boughton, Elizabeth H. Buckley, Yvonne M. Bugalho, Miguel Nuno Donohue, Ian Dwyer, John Firn, Jennifer Peri, Pablo Luis Cadotte, Marc W. |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Pastures Phylogeny Dominant Species Abiotic Factors Biotic Factors Nutrients Pastizales Filogenia Especies Dominantes Factores Abióticos Factores Bióticos Nutrientes Community Assembly Patterns Patrones de Ensable de Comunidades |
topic |
Pastures Phylogeny Dominant Species Abiotic Factors Biotic Factors Nutrients Pastizales Filogenia Especies Dominantes Factores Abióticos Factores Bióticos Nutrientes Community Assembly Patterns Patrones de Ensable de Comunidades |
dc.description.none.fl_txt_mv |
Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities. EEA Santa Cruz Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough. Department of Physical and Environmental Sciences; Canadá. Fil: Borer, Elizabeth T. University of Minnesota; Estados Unidos Fil: Seabloom, Eric W. University of Minnesota; Estados Unidos Fil: Alberti, Juan. Universidad Nacional de Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras; Argentina. Fil: Baez, Selene. Escuela Politécnica Nacional. Department of Biology; Ecuador. Fil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados Unidos Fil: Boughton, Elizabeth H. Archbold Biological Station. Venus, Florida; Estados Unidos Fil: Buckley, Yvonne M. Trinity College Dublin. School of Natural Sciences, Zoology; Irlanda Fil: Bugalho, Miguel Nuno. University of Lisbon. Centre for Applied Ecology Prof. Baeta Neves (CEABN-InBIO). School of Agriculture; Portugal. Fil: Donohue, Ian. Trinity College Dublin. School of Natural Sciences, Zoology; Irlanda Fil: Dwyer, John. University of Queensland. School of Biological Sciences; Australia. Fil: Firn, Jennifer. Queensland University of Technology (QUT); Australia. Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Cadotte, Marc W. University of Toronto Scarborough. Department of Biological Sciences; Canadá. Fil: Cadotte, Marc W. University of Toronto. Department of Ecology and Evolutionary Biology; Canadá. |
description |
Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-22 2022-01-05T10:24:38Z 2022-01-05T10:24:38Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/11052 https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.8266 Arenillas C.A.;Borer, E.; Seabloom E.; Alberti J.; Baez S.; Bakker J.; Boughton E.; Buckley Y.; Bugalho M.; Donohue I.; Dwyer J.; Firn J.; Gridzak R.; Hagenah N.; Hautier Y.; Helm A.; Jentsch A.; Knops J.; Komatsu K.J.; Laanisto L.; Laungani R.; Mcculley R.; Moore J.; Morgan J.; Peri P.L.; Power S.; Price J.; Sankaran M.; Schamp B.; Speziale K.; Standish R.; Virtanen R. Cadotte M. Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally. Ecology and Evolution 11(24): 17744-17761. 2045-7758 https://doi.org/10.1002/ece3.8266 |
url |
http://hdl.handle.net/20.500.12123/11052 https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.8266 https://doi.org/10.1002/ece3.8266 |
identifier_str_mv |
Arenillas C.A.;Borer, E.; Seabloom E.; Alberti J.; Baez S.; Bakker J.; Boughton E.; Buckley Y.; Bugalho M.; Donohue I.; Dwyer J.; Firn J.; Gridzak R.; Hagenah N.; Hautier Y.; Helm A.; Jentsch A.; Knops J.; Komatsu K.J.; Laanisto L.; Laungani R.; Mcculley R.; Moore J.; Morgan J.; Peri P.L.; Power S.; Price J.; Sankaran M.; Schamp B.; Speziale K.; Standish R.; Virtanen R. Cadotte M. Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally. Ecology and Evolution 11(24): 17744-17761. 2045-7758 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Ecology and evolution |
publisher.none.fl_str_mv |
Wiley Ecology and evolution |
dc.source.none.fl_str_mv |
Ecology and Evolution 11 (24) : 17744-17761 (December 2021) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846143542620061696 |
score |
12.712165 |