Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally

Autores
Arnillas, Carlos Alberto; Borer, Elizabeth T.; Seabloom, Eric William; Alberti, Juan; Baez, Selene; Bakker, Jonathan D.; Boughton, Elizabeth H.; Buckley, Yvonne M.  ; Bugalho, Miguel Nuno; Donohue, Ian; Dwyer, John; Firn, Jennifer; Peri, Pablo Luis; Cadotte, Marc W.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.
EEA Santa Cruz
Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough. Department of Physical and Environmental Sciences; Canadá.
Fil: Borer, Elizabeth T. University of Minnesota; Estados Unidos
Fil: Seabloom, Eric W. University of Minnesota; Estados Unidos
Fil: Alberti, Juan. Universidad Nacional de Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras; Argentina.
Fil: Baez, Selene. Escuela Politécnica Nacional. Department of Biology; Ecuador.
Fil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados Unidos
Fil: Boughton, Elizabeth H. Archbold Biological Station. Venus, Florida; Estados Unidos
Fil: Buckley, Yvonne M. Trinity College Dublin. School of Natural Sciences, Zoology; Irlanda
Fil: Bugalho, Miguel Nuno. University of Lisbon. Centre for Applied Ecology Prof. Baeta Neves (CEABN-InBIO). School of Agriculture; Portugal.
Fil: Donohue, Ian. Trinity College Dublin. School of Natural Sciences, Zoology; Irlanda
Fil: Dwyer, John. University of Queensland. School of Biological Sciences; Australia.
Fil: Firn, Jennifer. Queensland University of Technology (QUT); Australia.
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.
Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Cadotte, Marc W. University of Toronto Scarborough. Department of Biological Sciences; Canadá.
Fil: Cadotte, Marc W. University of Toronto. Department of Ecology and Evolutionary Biology; Canadá.
Fuente
Ecology and Evolution 11 (24) : 17744-17761 (December 2021)
Materia
Pastures
Phylogeny
Dominant Species
Abiotic Factors
Biotic Factors
Nutrients
Pastizales
Filogenia
Especies Dominantes
Factores Abióticos
Factores Bióticos
Nutrientes
Community Assembly Patterns
Patrones de Ensable de Comunidades
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/11052

id INTADig_219c8aa474859581e2c69c37916313d1
oai_identifier_str oai:localhost:20.500.12123/11052
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globallyArnillas, Carlos AlbertoBorer, Elizabeth T.Seabloom, Eric WilliamAlberti, JuanBaez, SeleneBakker, Jonathan D.Boughton, Elizabeth H.Buckley, Yvonne M.  Bugalho, Miguel NunoDonohue, IanDwyer, JohnFirn, JenniferPeri, Pablo LuisCadotte, Marc W.PasturesPhylogenyDominant SpeciesAbiotic FactorsBiotic FactorsNutrientsPastizalesFilogeniaEspecies DominantesFactores AbióticosFactores BióticosNutrientesCommunity Assembly PatternsPatrones de Ensable de ComunidadesBiotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.EEA Santa CruzFil: Arnillas, Carlos Alberto. University of Toronto Scarborough. Department of Physical and Environmental Sciences; Canadá.Fil: Borer, Elizabeth T. University of Minnesota; Estados UnidosFil: Seabloom, Eric W. University of Minnesota; Estados UnidosFil: Alberti, Juan. Universidad Nacional de Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras; Argentina.Fil: Baez, Selene. Escuela Politécnica Nacional. Department of Biology; Ecuador.Fil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados UnidosFil: Boughton, Elizabeth H. Archbold Biological Station. Venus, Florida; Estados UnidosFil: Buckley, Yvonne M. Trinity College Dublin. School of Natural Sciences, Zoology; IrlandaFil: Bugalho, Miguel Nuno. University of Lisbon. Centre for Applied Ecology Prof. Baeta Neves (CEABN-InBIO). School of Agriculture; Portugal.Fil: Donohue, Ian. Trinity College Dublin. School of Natural Sciences, Zoology; IrlandaFil: Dwyer, John. University of Queensland. School of Biological Sciences; Australia.Fil: Firn, Jennifer. Queensland University of Technology (QUT); Australia.Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Cadotte, Marc W. University of Toronto Scarborough. Department of Biological Sciences; Canadá.Fil: Cadotte, Marc W. University of Toronto. Department of Ecology and Evolutionary Biology; Canadá.Wiley Ecology and evolution2022-01-05T10:24:38Z2022-01-05T10:24:38Z2021-11-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/11052https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.8266Arenillas C.A.;Borer, E.; Seabloom E.; Alberti J.; Baez S.; Bakker J.; Boughton E.; Buckley Y.; Bugalho M.; Donohue I.; Dwyer J.; Firn J.; Gridzak R.; Hagenah N.; Hautier Y.; Helm A.; Jentsch A.; Knops J.; Komatsu K.J.; Laanisto L.; Laungani R.; Mcculley R.; Moore J.; Morgan J.; Peri P.L.; Power S.; Price J.; Sankaran M.; Schamp B.; Speziale K.; Standish R.; Virtanen R. Cadotte M. Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally. Ecology and Evolution 11(24): 17744-17761.2045-7758https://doi.org/10.1002/ece3.8266Ecology and Evolution 11 (24) : 17744-17761 (December 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:30:20Zoai:localhost:20.500.12123/11052instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:30:21.538INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally
title Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally
spellingShingle Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally
Arnillas, Carlos Alberto
Pastures
Phylogeny
Dominant Species
Abiotic Factors
Biotic Factors
Nutrients
Pastizales
Filogenia
Especies Dominantes
Factores Abióticos
Factores Bióticos
Nutrientes
Community Assembly Patterns
Patrones de Ensable de Comunidades
title_short Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally
title_full Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally
title_fullStr Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally
title_full_unstemmed Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally
title_sort Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally
dc.creator.none.fl_str_mv Arnillas, Carlos Alberto
Borer, Elizabeth T.
Seabloom, Eric William
Alberti, Juan
Baez, Selene
Bakker, Jonathan D.
Boughton, Elizabeth H.
Buckley, Yvonne M.  
Bugalho, Miguel Nuno
Donohue, Ian
Dwyer, John
Firn, Jennifer
Peri, Pablo Luis
Cadotte, Marc W.
author Arnillas, Carlos Alberto
author_facet Arnillas, Carlos Alberto
Borer, Elizabeth T.
Seabloom, Eric William
Alberti, Juan
Baez, Selene
Bakker, Jonathan D.
Boughton, Elizabeth H.
Buckley, Yvonne M.  
Bugalho, Miguel Nuno
Donohue, Ian
Dwyer, John
Firn, Jennifer
Peri, Pablo Luis
Cadotte, Marc W.
author_role author
author2 Borer, Elizabeth T.
Seabloom, Eric William
Alberti, Juan
Baez, Selene
Bakker, Jonathan D.
Boughton, Elizabeth H.
Buckley, Yvonne M.  
Bugalho, Miguel Nuno
Donohue, Ian
Dwyer, John
Firn, Jennifer
Peri, Pablo Luis
Cadotte, Marc W.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Pastures
Phylogeny
Dominant Species
Abiotic Factors
Biotic Factors
Nutrients
Pastizales
Filogenia
Especies Dominantes
Factores Abióticos
Factores Bióticos
Nutrientes
Community Assembly Patterns
Patrones de Ensable de Comunidades
topic Pastures
Phylogeny
Dominant Species
Abiotic Factors
Biotic Factors
Nutrients
Pastizales
Filogenia
Especies Dominantes
Factores Abióticos
Factores Bióticos
Nutrientes
Community Assembly Patterns
Patrones de Ensable de Comunidades
dc.description.none.fl_txt_mv Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.
EEA Santa Cruz
Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough. Department of Physical and Environmental Sciences; Canadá.
Fil: Borer, Elizabeth T. University of Minnesota; Estados Unidos
Fil: Seabloom, Eric W. University of Minnesota; Estados Unidos
Fil: Alberti, Juan. Universidad Nacional de Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras; Argentina.
Fil: Baez, Selene. Escuela Politécnica Nacional. Department of Biology; Ecuador.
Fil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados Unidos
Fil: Boughton, Elizabeth H. Archbold Biological Station. Venus, Florida; Estados Unidos
Fil: Buckley, Yvonne M. Trinity College Dublin. School of Natural Sciences, Zoology; Irlanda
Fil: Bugalho, Miguel Nuno. University of Lisbon. Centre for Applied Ecology Prof. Baeta Neves (CEABN-InBIO). School of Agriculture; Portugal.
Fil: Donohue, Ian. Trinity College Dublin. School of Natural Sciences, Zoology; Irlanda
Fil: Dwyer, John. University of Queensland. School of Biological Sciences; Australia.
Fil: Firn, Jennifer. Queensland University of Technology (QUT); Australia.
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.
Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Cadotte, Marc W. University of Toronto Scarborough. Department of Biological Sciences; Canadá.
Fil: Cadotte, Marc W. University of Toronto. Department of Ecology and Evolutionary Biology; Canadá.
description Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-22
2022-01-05T10:24:38Z
2022-01-05T10:24:38Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/11052
https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.8266
Arenillas C.A.;Borer, E.; Seabloom E.; Alberti J.; Baez S.; Bakker J.; Boughton E.; Buckley Y.; Bugalho M.; Donohue I.; Dwyer J.; Firn J.; Gridzak R.; Hagenah N.; Hautier Y.; Helm A.; Jentsch A.; Knops J.; Komatsu K.J.; Laanisto L.; Laungani R.; Mcculley R.; Moore J.; Morgan J.; Peri P.L.; Power S.; Price J.; Sankaran M.; Schamp B.; Speziale K.; Standish R.; Virtanen R. Cadotte M. Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally. Ecology and Evolution 11(24): 17744-17761.
2045-7758
https://doi.org/10.1002/ece3.8266
url http://hdl.handle.net/20.500.12123/11052
https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.8266
https://doi.org/10.1002/ece3.8266
identifier_str_mv Arenillas C.A.;Borer, E.; Seabloom E.; Alberti J.; Baez S.; Bakker J.; Boughton E.; Buckley Y.; Bugalho M.; Donohue I.; Dwyer J.; Firn J.; Gridzak R.; Hagenah N.; Hautier Y.; Helm A.; Jentsch A.; Knops J.; Komatsu K.J.; Laanisto L.; Laungani R.; Mcculley R.; Moore J.; Morgan J.; Peri P.L.; Power S.; Price J.; Sankaran M.; Schamp B.; Speziale K.; Standish R.; Virtanen R. Cadotte M. Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally. Ecology and Evolution 11(24): 17744-17761.
2045-7758
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley Ecology and evolution
publisher.none.fl_str_mv Wiley Ecology and evolution
dc.source.none.fl_str_mv Ecology and Evolution 11 (24) : 17744-17761 (December 2021)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846143542620061696
score 12.712165