Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally
- Autores
- Arnillas, Carlos Alberto; Borer, Elizabeth; Seabloom, Eric; Alberti, Juan; Baez, Selene; Bakker, Jonathan; Boughton, Elizabeth H.; Buckley, Yvonne M.; Bugalho, Miguel Nuno; Donohue, Ian; Dwyer, John; Firn, Jennifer; Gridzak, Riley; Hagenah, Nicole; Hautier, Yann; Helm, Aveliina; Jentsch, Anke; Knops, Johannes M. H.; Komatsu, Kimberly J.; Laanisto, Lauri; Laungani, Ramesh; McCulley, Rebecca; Moore, Joslin L.; Morgan, John W.; Peri, Pablo Luis; Power, Sally A.; Price, Jodi; Sankaran, Mahesh; Schamp, Brandon; Speziale, Karina Lilian; Standish, Rachel; Virtanen, Risto; Cadotte, Marc W.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.
Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough; Canadá
Fil: Borer, Elizabeth. University of Minnesota; Estados Unidos
Fil: Seabloom, Eric. University of Minnesota; Estados Unidos
Fil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: Baez, Selene. Escuela Politécnica Nacional; Ecuador
Fil: Bakker, Jonathan. University of Washington; Estados Unidos
Fil: Boughton, Elizabeth H.. Archbold Biological Station; Estados Unidos
Fil: Buckley, Yvonne M.. Trinity College Dublin; Irlanda
Fil: Bugalho, Miguel Nuno. Universidad de Lisboa; Portugal
Fil: Donohue, Ian. Trinity College Dublin; Irlanda
Fil: Dwyer, John. University of Queensland; Australia
Fil: Firn, Jennifer. The University of Queensland; Australia
Fil: Gridzak, Riley. Queens University; Canadá
Fil: Hagenah, Nicole. University of Pretoria; Sudáfrica
Fil: Hautier, Yann. Utrecht University; Países Bajos
Fil: Helm, Aveliina. University of Tartu; Estonia
Fil: Jentsch, Anke. University of Bayreuth; Alemania
Fil: Knops, Johannes M. H.. Xi'an Jiaotong Liverpool University; China. University of Nebraska; Estados Unidos
Fil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados Unidos
Fil: Laanisto, Lauri. Estonian University of Life Sciences; Estonia
Fil: Laungani, Ramesh. Poly Prep Country Day School; Estados Unidos
Fil: McCulley, Rebecca. University of Kentucky; Estados Unidos
Fil: Moore, Joslin L.. Monash University; Australia
Fil: Morgan, John W.. La Trobe University; Australia
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur. Estación Experimental Agropecuaria Santa Cruz. Agencia de Extensión Rural Río Gallegos; Argentina
Fil: Power, Sally A.. University of Western Sydney; Australia
Fil: Price, Jodi. Charles Sturt University; Australia
Fil: Sankaran, Mahesh. National Centre for Biological Sciences; India
Fil: Schamp, Brandon. Algoma University; Canadá
Fil: Speziale, Karina Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Standish, Rachel. Murdoch University; Australia
Fil: Virtanen, Risto. University of Oulu; Finlandia
Fil: Cadotte, Marc W.. University of Toronto Scarborough; Canadá. University of Toronto; Canadá - Materia
-
BIODIVERSITY
COMMUNITY ASSEMBLY
EVOLUTIONARY STRATEGIES
GRASSLANDS
NUTRIENT NETWORK
PHYLOGENETIC RELATEDNESS
SPECIES DOMINANCE
SPECIES NONDOMINANCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/168115
Ver los metadatos del registro completo
id |
CONICETDig_194ee216674dcb568b3b3fcfe5a7552b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/168115 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globallyArnillas, Carlos AlbertoBorer, ElizabethSeabloom, EricAlberti, JuanBaez, SeleneBakker, JonathanBoughton, Elizabeth H.Buckley, Yvonne M.Bugalho, Miguel NunoDonohue, IanDwyer, JohnFirn, JenniferGridzak, RileyHagenah, NicoleHautier, YannHelm, AveliinaJentsch, AnkeKnops, Johannes M. H.Komatsu, Kimberly J.Laanisto, LauriLaungani, RameshMcCulley, RebeccaMoore, Joslin L.Morgan, John W.Peri, Pablo LuisPower, Sally A.Price, JodiSankaran, MaheshSchamp, BrandonSpeziale, Karina LilianStandish, RachelVirtanen, RistoCadotte, Marc W.BIODIVERSITYCOMMUNITY ASSEMBLYEVOLUTIONARY STRATEGIESGRASSLANDSNUTRIENT NETWORKPHYLOGENETIC RELATEDNESSSPECIES DOMINANCESPECIES NONDOMINANCEhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough; CanadáFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Baez, Selene. Escuela Politécnica Nacional; EcuadorFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Boughton, Elizabeth H.. Archbold Biological Station; Estados UnidosFil: Buckley, Yvonne M.. Trinity College Dublin; IrlandaFil: Bugalho, Miguel Nuno. Universidad de Lisboa; PortugalFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: Dwyer, John. University of Queensland; AustraliaFil: Firn, Jennifer. The University of Queensland; AustraliaFil: Gridzak, Riley. Queens University; CanadáFil: Hagenah, Nicole. University of Pretoria; SudáfricaFil: Hautier, Yann. Utrecht University; Países BajosFil: Helm, Aveliina. University of Tartu; EstoniaFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Knops, Johannes M. H.. Xi'an Jiaotong Liverpool University; China. University of Nebraska; Estados UnidosFil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados UnidosFil: Laanisto, Lauri. Estonian University of Life Sciences; EstoniaFil: Laungani, Ramesh. Poly Prep Country Day School; Estados UnidosFil: McCulley, Rebecca. University of Kentucky; Estados UnidosFil: Moore, Joslin L.. Monash University; AustraliaFil: Morgan, John W.. La Trobe University; AustraliaFil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur. Estación Experimental Agropecuaria Santa Cruz. Agencia de Extensión Rural Río Gallegos; ArgentinaFil: Power, Sally A.. University of Western Sydney; AustraliaFil: Price, Jodi. Charles Sturt University; AustraliaFil: Sankaran, Mahesh. National Centre for Biological Sciences; IndiaFil: Schamp, Brandon. Algoma University; CanadáFil: Speziale, Karina Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Standish, Rachel. Murdoch University; AustraliaFil: Virtanen, Risto. University of Oulu; FinlandiaFil: Cadotte, Marc W.. University of Toronto Scarborough; Canadá. University of Toronto; CanadáJohn Wiley & Sons Inc.2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/168115Arnillas, Carlos Alberto; Borer, Elizabeth; Seabloom, Eric; Alberti, Juan; Baez, Selene; et al.; Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally; John Wiley & Sons Inc.; Ecology and Evolution; 11; 24; 12-2021; 17744-177612045-77582045-7758CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/ece3.8266info:eu-repo/semantics/altIdentifier/doi/10.1002/ece3.8266info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:50:15Zoai:ri.conicet.gov.ar:11336/168115instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:50:15.569CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally |
title |
Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally |
spellingShingle |
Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally Arnillas, Carlos Alberto BIODIVERSITY COMMUNITY ASSEMBLY EVOLUTIONARY STRATEGIES GRASSLANDS NUTRIENT NETWORK PHYLOGENETIC RELATEDNESS SPECIES DOMINANCE SPECIES NONDOMINANCE |
title_short |
Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally |
title_full |
Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally |
title_fullStr |
Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally |
title_full_unstemmed |
Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally |
title_sort |
Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally |
dc.creator.none.fl_str_mv |
Arnillas, Carlos Alberto Borer, Elizabeth Seabloom, Eric Alberti, Juan Baez, Selene Bakker, Jonathan Boughton, Elizabeth H. Buckley, Yvonne M. Bugalho, Miguel Nuno Donohue, Ian Dwyer, John Firn, Jennifer Gridzak, Riley Hagenah, Nicole Hautier, Yann Helm, Aveliina Jentsch, Anke Knops, Johannes M. H. Komatsu, Kimberly J. Laanisto, Lauri Laungani, Ramesh McCulley, Rebecca Moore, Joslin L. Morgan, John W. Peri, Pablo Luis Power, Sally A. Price, Jodi Sankaran, Mahesh Schamp, Brandon Speziale, Karina Lilian Standish, Rachel Virtanen, Risto Cadotte, Marc W. |
author |
Arnillas, Carlos Alberto |
author_facet |
Arnillas, Carlos Alberto Borer, Elizabeth Seabloom, Eric Alberti, Juan Baez, Selene Bakker, Jonathan Boughton, Elizabeth H. Buckley, Yvonne M. Bugalho, Miguel Nuno Donohue, Ian Dwyer, John Firn, Jennifer Gridzak, Riley Hagenah, Nicole Hautier, Yann Helm, Aveliina Jentsch, Anke Knops, Johannes M. H. Komatsu, Kimberly J. Laanisto, Lauri Laungani, Ramesh McCulley, Rebecca Moore, Joslin L. Morgan, John W. Peri, Pablo Luis Power, Sally A. Price, Jodi Sankaran, Mahesh Schamp, Brandon Speziale, Karina Lilian Standish, Rachel Virtanen, Risto Cadotte, Marc W. |
author_role |
author |
author2 |
Borer, Elizabeth Seabloom, Eric Alberti, Juan Baez, Selene Bakker, Jonathan Boughton, Elizabeth H. Buckley, Yvonne M. Bugalho, Miguel Nuno Donohue, Ian Dwyer, John Firn, Jennifer Gridzak, Riley Hagenah, Nicole Hautier, Yann Helm, Aveliina Jentsch, Anke Knops, Johannes M. H. Komatsu, Kimberly J. Laanisto, Lauri Laungani, Ramesh McCulley, Rebecca Moore, Joslin L. Morgan, John W. Peri, Pablo Luis Power, Sally A. Price, Jodi Sankaran, Mahesh Schamp, Brandon Speziale, Karina Lilian Standish, Rachel Virtanen, Risto Cadotte, Marc W. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
BIODIVERSITY COMMUNITY ASSEMBLY EVOLUTIONARY STRATEGIES GRASSLANDS NUTRIENT NETWORK PHYLOGENETIC RELATEDNESS SPECIES DOMINANCE SPECIES NONDOMINANCE |
topic |
BIODIVERSITY COMMUNITY ASSEMBLY EVOLUTIONARY STRATEGIES GRASSLANDS NUTRIENT NETWORK PHYLOGENETIC RELATEDNESS SPECIES DOMINANCE SPECIES NONDOMINANCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities. Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough; Canadá Fil: Borer, Elizabeth. University of Minnesota; Estados Unidos Fil: Seabloom, Eric. University of Minnesota; Estados Unidos Fil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina Fil: Baez, Selene. Escuela Politécnica Nacional; Ecuador Fil: Bakker, Jonathan. University of Washington; Estados Unidos Fil: Boughton, Elizabeth H.. Archbold Biological Station; Estados Unidos Fil: Buckley, Yvonne M.. Trinity College Dublin; Irlanda Fil: Bugalho, Miguel Nuno. Universidad de Lisboa; Portugal Fil: Donohue, Ian. Trinity College Dublin; Irlanda Fil: Dwyer, John. University of Queensland; Australia Fil: Firn, Jennifer. The University of Queensland; Australia Fil: Gridzak, Riley. Queens University; Canadá Fil: Hagenah, Nicole. University of Pretoria; Sudáfrica Fil: Hautier, Yann. Utrecht University; Países Bajos Fil: Helm, Aveliina. University of Tartu; Estonia Fil: Jentsch, Anke. University of Bayreuth; Alemania Fil: Knops, Johannes M. H.. Xi'an Jiaotong Liverpool University; China. University of Nebraska; Estados Unidos Fil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados Unidos Fil: Laanisto, Lauri. Estonian University of Life Sciences; Estonia Fil: Laungani, Ramesh. Poly Prep Country Day School; Estados Unidos Fil: McCulley, Rebecca. University of Kentucky; Estados Unidos Fil: Moore, Joslin L.. Monash University; Australia Fil: Morgan, John W.. La Trobe University; Australia Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur. Estación Experimental Agropecuaria Santa Cruz. Agencia de Extensión Rural Río Gallegos; Argentina Fil: Power, Sally A.. University of Western Sydney; Australia Fil: Price, Jodi. Charles Sturt University; Australia Fil: Sankaran, Mahesh. National Centre for Biological Sciences; India Fil: Schamp, Brandon. Algoma University; Canadá Fil: Speziale, Karina Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Standish, Rachel. Murdoch University; Australia Fil: Virtanen, Risto. University of Oulu; Finlandia Fil: Cadotte, Marc W.. University of Toronto Scarborough; Canadá. University of Toronto; Canadá |
description |
Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/168115 Arnillas, Carlos Alberto; Borer, Elizabeth; Seabloom, Eric; Alberti, Juan; Baez, Selene; et al.; Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally; John Wiley & Sons Inc.; Ecology and Evolution; 11; 24; 12-2021; 17744-17761 2045-7758 2045-7758 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/168115 |
identifier_str_mv |
Arnillas, Carlos Alberto; Borer, Elizabeth; Seabloom, Eric; Alberti, Juan; Baez, Selene; et al.; Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally; John Wiley & Sons Inc.; Ecology and Evolution; 11; 24; 12-2021; 17744-17761 2045-7758 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/ece3.8266 info:eu-repo/semantics/altIdentifier/doi/10.1002/ece3.8266 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Inc. |
publisher.none.fl_str_mv |
John Wiley & Sons Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083026431246336 |
score |
13.22299 |