Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally

Autores
Arnillas, Carlos Alberto; Borer, Elizabeth; Seabloom, Eric; Alberti, Juan; Baez, Selene; Bakker, Jonathan; Boughton, Elizabeth H.; Buckley, Yvonne M.; Bugalho, Miguel Nuno; Donohue, Ian; Dwyer, John; Firn, Jennifer; Gridzak, Riley; Hagenah, Nicole; Hautier, Yann; Helm, Aveliina; Jentsch, Anke; Knops, Johannes M. H.; Komatsu, Kimberly J.; Laanisto, Lauri; Laungani, Ramesh; McCulley, Rebecca; Moore, Joslin L.; Morgan, John W.; Peri, Pablo Luis; Power, Sally A.; Price, Jodi; Sankaran, Mahesh; Schamp, Brandon; Speziale, Karina Lilian; Standish, Rachel; Virtanen, Risto; Cadotte, Marc W.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.
Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough; Canadá
Fil: Borer, Elizabeth. University of Minnesota; Estados Unidos
Fil: Seabloom, Eric. University of Minnesota; Estados Unidos
Fil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: Baez, Selene. Escuela Politécnica Nacional; Ecuador
Fil: Bakker, Jonathan. University of Washington; Estados Unidos
Fil: Boughton, Elizabeth H.. Archbold Biological Station; Estados Unidos
Fil: Buckley, Yvonne M.. Trinity College Dublin; Irlanda
Fil: Bugalho, Miguel Nuno. Universidad de Lisboa; Portugal
Fil: Donohue, Ian. Trinity College Dublin; Irlanda
Fil: Dwyer, John. University of Queensland; Australia
Fil: Firn, Jennifer. The University of Queensland; Australia
Fil: Gridzak, Riley. Queens University; Canadá
Fil: Hagenah, Nicole. University of Pretoria; Sudáfrica
Fil: Hautier, Yann. Utrecht University; Países Bajos
Fil: Helm, Aveliina. University of Tartu; Estonia
Fil: Jentsch, Anke. University of Bayreuth; Alemania
Fil: Knops, Johannes M. H.. Xi'an Jiaotong Liverpool University; China. University of Nebraska; Estados Unidos
Fil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados Unidos
Fil: Laanisto, Lauri. Estonian University of Life Sciences; Estonia
Fil: Laungani, Ramesh. Poly Prep Country Day School; Estados Unidos
Fil: McCulley, Rebecca. University of Kentucky; Estados Unidos
Fil: Moore, Joslin L.. Monash University; Australia
Fil: Morgan, John W.. La Trobe University; Australia
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur. Estación Experimental Agropecuaria Santa Cruz. Agencia de Extensión Rural Río Gallegos; Argentina
Fil: Power, Sally A.. University of Western Sydney; Australia
Fil: Price, Jodi. Charles Sturt University; Australia
Fil: Sankaran, Mahesh. National Centre for Biological Sciences; India
Fil: Schamp, Brandon. Algoma University; Canadá
Fil: Speziale, Karina Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Standish, Rachel. Murdoch University; Australia
Fil: Virtanen, Risto. University of Oulu; Finlandia
Fil: Cadotte, Marc W.. University of Toronto Scarborough; Canadá. University of Toronto; Canadá
Materia
BIODIVERSITY
COMMUNITY ASSEMBLY
EVOLUTIONARY STRATEGIES
GRASSLANDS
NUTRIENT NETWORK
PHYLOGENETIC RELATEDNESS
SPECIES DOMINANCE
SPECIES NONDOMINANCE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/168115

id CONICETDig_194ee216674dcb568b3b3fcfe5a7552b
oai_identifier_str oai:ri.conicet.gov.ar:11336/168115
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globallyArnillas, Carlos AlbertoBorer, ElizabethSeabloom, EricAlberti, JuanBaez, SeleneBakker, JonathanBoughton, Elizabeth H.Buckley, Yvonne M.Bugalho, Miguel NunoDonohue, IanDwyer, JohnFirn, JenniferGridzak, RileyHagenah, NicoleHautier, YannHelm, AveliinaJentsch, AnkeKnops, Johannes M. H.Komatsu, Kimberly J.Laanisto, LauriLaungani, RameshMcCulley, RebeccaMoore, Joslin L.Morgan, John W.Peri, Pablo LuisPower, Sally A.Price, JodiSankaran, MaheshSchamp, BrandonSpeziale, Karina LilianStandish, RachelVirtanen, RistoCadotte, Marc W.BIODIVERSITYCOMMUNITY ASSEMBLYEVOLUTIONARY STRATEGIESGRASSLANDSNUTRIENT NETWORKPHYLOGENETIC RELATEDNESSSPECIES DOMINANCESPECIES NONDOMINANCEhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough; CanadáFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Baez, Selene. Escuela Politécnica Nacional; EcuadorFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Boughton, Elizabeth H.. Archbold Biological Station; Estados UnidosFil: Buckley, Yvonne M.. Trinity College Dublin; IrlandaFil: Bugalho, Miguel Nuno. Universidad de Lisboa; PortugalFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: Dwyer, John. University of Queensland; AustraliaFil: Firn, Jennifer. The University of Queensland; AustraliaFil: Gridzak, Riley. Queens University; CanadáFil: Hagenah, Nicole. University of Pretoria; SudáfricaFil: Hautier, Yann. Utrecht University; Países BajosFil: Helm, Aveliina. University of Tartu; EstoniaFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Knops, Johannes M. H.. Xi'an Jiaotong Liverpool University; China. University of Nebraska; Estados UnidosFil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados UnidosFil: Laanisto, Lauri. Estonian University of Life Sciences; EstoniaFil: Laungani, Ramesh. Poly Prep Country Day School; Estados UnidosFil: McCulley, Rebecca. University of Kentucky; Estados UnidosFil: Moore, Joslin L.. Monash University; AustraliaFil: Morgan, John W.. La Trobe University; AustraliaFil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur. Estación Experimental Agropecuaria Santa Cruz. Agencia de Extensión Rural Río Gallegos; ArgentinaFil: Power, Sally A.. University of Western Sydney; AustraliaFil: Price, Jodi. Charles Sturt University; AustraliaFil: Sankaran, Mahesh. National Centre for Biological Sciences; IndiaFil: Schamp, Brandon. Algoma University; CanadáFil: Speziale, Karina Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Standish, Rachel. Murdoch University; AustraliaFil: Virtanen, Risto. University of Oulu; FinlandiaFil: Cadotte, Marc W.. University of Toronto Scarborough; Canadá. University of Toronto; CanadáJohn Wiley & Sons Inc.2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/168115Arnillas, Carlos Alberto; Borer, Elizabeth; Seabloom, Eric; Alberti, Juan; Baez, Selene; et al.; Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally; John Wiley & Sons Inc.; Ecology and Evolution; 11; 24; 12-2021; 17744-177612045-77582045-7758CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/ece3.8266info:eu-repo/semantics/altIdentifier/doi/10.1002/ece3.8266info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:50:15Zoai:ri.conicet.gov.ar:11336/168115instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:50:15.569CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally
title Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally
spellingShingle Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally
Arnillas, Carlos Alberto
BIODIVERSITY
COMMUNITY ASSEMBLY
EVOLUTIONARY STRATEGIES
GRASSLANDS
NUTRIENT NETWORK
PHYLOGENETIC RELATEDNESS
SPECIES DOMINANCE
SPECIES NONDOMINANCE
title_short Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally
title_full Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally
title_fullStr Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally
title_full_unstemmed Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally
title_sort Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally
dc.creator.none.fl_str_mv Arnillas, Carlos Alberto
Borer, Elizabeth
Seabloom, Eric
Alberti, Juan
Baez, Selene
Bakker, Jonathan
Boughton, Elizabeth H.
Buckley, Yvonne M.
Bugalho, Miguel Nuno
Donohue, Ian
Dwyer, John
Firn, Jennifer
Gridzak, Riley
Hagenah, Nicole
Hautier, Yann
Helm, Aveliina
Jentsch, Anke
Knops, Johannes M. H.
Komatsu, Kimberly J.
Laanisto, Lauri
Laungani, Ramesh
McCulley, Rebecca
Moore, Joslin L.
Morgan, John W.
Peri, Pablo Luis
Power, Sally A.
Price, Jodi
Sankaran, Mahesh
Schamp, Brandon
Speziale, Karina Lilian
Standish, Rachel
Virtanen, Risto
Cadotte, Marc W.
author Arnillas, Carlos Alberto
author_facet Arnillas, Carlos Alberto
Borer, Elizabeth
Seabloom, Eric
Alberti, Juan
Baez, Selene
Bakker, Jonathan
Boughton, Elizabeth H.
Buckley, Yvonne M.
Bugalho, Miguel Nuno
Donohue, Ian
Dwyer, John
Firn, Jennifer
Gridzak, Riley
Hagenah, Nicole
Hautier, Yann
Helm, Aveliina
Jentsch, Anke
Knops, Johannes M. H.
Komatsu, Kimberly J.
Laanisto, Lauri
Laungani, Ramesh
McCulley, Rebecca
Moore, Joslin L.
Morgan, John W.
Peri, Pablo Luis
Power, Sally A.
Price, Jodi
Sankaran, Mahesh
Schamp, Brandon
Speziale, Karina Lilian
Standish, Rachel
Virtanen, Risto
Cadotte, Marc W.
author_role author
author2 Borer, Elizabeth
Seabloom, Eric
Alberti, Juan
Baez, Selene
Bakker, Jonathan
Boughton, Elizabeth H.
Buckley, Yvonne M.
Bugalho, Miguel Nuno
Donohue, Ian
Dwyer, John
Firn, Jennifer
Gridzak, Riley
Hagenah, Nicole
Hautier, Yann
Helm, Aveliina
Jentsch, Anke
Knops, Johannes M. H.
Komatsu, Kimberly J.
Laanisto, Lauri
Laungani, Ramesh
McCulley, Rebecca
Moore, Joslin L.
Morgan, John W.
Peri, Pablo Luis
Power, Sally A.
Price, Jodi
Sankaran, Mahesh
Schamp, Brandon
Speziale, Karina Lilian
Standish, Rachel
Virtanen, Risto
Cadotte, Marc W.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BIODIVERSITY
COMMUNITY ASSEMBLY
EVOLUTIONARY STRATEGIES
GRASSLANDS
NUTRIENT NETWORK
PHYLOGENETIC RELATEDNESS
SPECIES DOMINANCE
SPECIES NONDOMINANCE
topic BIODIVERSITY
COMMUNITY ASSEMBLY
EVOLUTIONARY STRATEGIES
GRASSLANDS
NUTRIENT NETWORK
PHYLOGENETIC RELATEDNESS
SPECIES DOMINANCE
SPECIES NONDOMINANCE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.
Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough; Canadá
Fil: Borer, Elizabeth. University of Minnesota; Estados Unidos
Fil: Seabloom, Eric. University of Minnesota; Estados Unidos
Fil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: Baez, Selene. Escuela Politécnica Nacional; Ecuador
Fil: Bakker, Jonathan. University of Washington; Estados Unidos
Fil: Boughton, Elizabeth H.. Archbold Biological Station; Estados Unidos
Fil: Buckley, Yvonne M.. Trinity College Dublin; Irlanda
Fil: Bugalho, Miguel Nuno. Universidad de Lisboa; Portugal
Fil: Donohue, Ian. Trinity College Dublin; Irlanda
Fil: Dwyer, John. University of Queensland; Australia
Fil: Firn, Jennifer. The University of Queensland; Australia
Fil: Gridzak, Riley. Queens University; Canadá
Fil: Hagenah, Nicole. University of Pretoria; Sudáfrica
Fil: Hautier, Yann. Utrecht University; Países Bajos
Fil: Helm, Aveliina. University of Tartu; Estonia
Fil: Jentsch, Anke. University of Bayreuth; Alemania
Fil: Knops, Johannes M. H.. Xi'an Jiaotong Liverpool University; China. University of Nebraska; Estados Unidos
Fil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados Unidos
Fil: Laanisto, Lauri. Estonian University of Life Sciences; Estonia
Fil: Laungani, Ramesh. Poly Prep Country Day School; Estados Unidos
Fil: McCulley, Rebecca. University of Kentucky; Estados Unidos
Fil: Moore, Joslin L.. Monash University; Australia
Fil: Morgan, John W.. La Trobe University; Australia
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur. Estación Experimental Agropecuaria Santa Cruz. Agencia de Extensión Rural Río Gallegos; Argentina
Fil: Power, Sally A.. University of Western Sydney; Australia
Fil: Price, Jodi. Charles Sturt University; Australia
Fil: Sankaran, Mahesh. National Centre for Biological Sciences; India
Fil: Schamp, Brandon. Algoma University; Canadá
Fil: Speziale, Karina Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Standish, Rachel. Murdoch University; Australia
Fil: Virtanen, Risto. University of Oulu; Finlandia
Fil: Cadotte, Marc W.. University of Toronto Scarborough; Canadá. University of Toronto; Canadá
description Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.
publishDate 2021
dc.date.none.fl_str_mv 2021-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/168115
Arnillas, Carlos Alberto; Borer, Elizabeth; Seabloom, Eric; Alberti, Juan; Baez, Selene; et al.; Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally; John Wiley & Sons Inc.; Ecology and Evolution; 11; 24; 12-2021; 17744-17761
2045-7758
2045-7758
CONICET Digital
CONICET
url http://hdl.handle.net/11336/168115
identifier_str_mv Arnillas, Carlos Alberto; Borer, Elizabeth; Seabloom, Eric; Alberti, Juan; Baez, Selene; et al.; Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally; John Wiley & Sons Inc.; Ecology and Evolution; 11; 24; 12-2021; 17744-17761
2045-7758
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/ece3.8266
info:eu-repo/semantics/altIdentifier/doi/10.1002/ece3.8266
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc.
publisher.none.fl_str_mv John Wiley & Sons Inc.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083026431246336
score 13.22299