MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes
- Autores
- Crescente, Juan Manuel; Zavallo, Diego; Helguera, Marcelo; Vanzetti, Leonardo Sebastian
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements present in a high number of conserved copies in eukaryote genomes. An accurate identification of these elements can help to shed light on the mechanisms controlling genome evolution and gene regulation. The structure and distribution of these elements are well-defined and therefore computational approaches can be used to identify MITEs sequences. Results: Here we describe MITE Tracker, a novel, open source software program that finds and classifies MITEs using an efficient alignment strategy to retrieve nearby inverted-repeat sequences from large genomes. This program groups them into high sequence homology families using a fast clustering algorithm and finally filters only those elements that were likely transposed from different genomic locations because of their low scoring flanking sequence alignment. Conclusions: Many programs have been proposed to find MITEs hidden in genomes. However, none of them are able to process large-scale genomes such as that of bread wheat. Furthermore, in many cases the existing methods perform high false-positive rates (or miss rates). The rice genome was used as reference to compare MITE Tracker against known tools. Our method turned out to be the most reliable in our tests. Indeed, it revealed more known elements, presented the lowest false-positive number and was the only program able to run with the bread wheat genome as input. In wheat, MITE Tracker discovered 6013 MITE families and allowed the first structural exploration of MITEs in the complete bread wheat genome.
EEA Marcos Juárez
Fil: Crescente, Juan Manuel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zavallo, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina
Fil: Helguera, Marcelo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina
Fil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Fuente
- BMC bioinformatics 19 : 348. (2018)
- Materia
-
Arroz
Trigo
Triticum Aestivum
Oryza Sativa
Genomas
Transposones
Rice
Wheat
Genomes
Transposons
Transposable Element
MITE
Miniature Inverted-repeat Transposable Elements - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/3607
Ver los metadatos del registro completo
id |
INTADig_2190ea7707092b364af862df76963fad |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/3607 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomesCrescente, Juan ManuelZavallo, DiegoHelguera, MarceloVanzetti, Leonardo SebastianArrozTrigoTriticum AestivumOryza SativaGenomasTransposonesRiceWheatGenomesTransposonsTransposable ElementMITEMiniature Inverted-repeat Transposable ElementsBackground: Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements present in a high number of conserved copies in eukaryote genomes. An accurate identification of these elements can help to shed light on the mechanisms controlling genome evolution and gene regulation. The structure and distribution of these elements are well-defined and therefore computational approaches can be used to identify MITEs sequences. Results: Here we describe MITE Tracker, a novel, open source software program that finds and classifies MITEs using an efficient alignment strategy to retrieve nearby inverted-repeat sequences from large genomes. This program groups them into high sequence homology families using a fast clustering algorithm and finally filters only those elements that were likely transposed from different genomic locations because of their low scoring flanking sequence alignment. Conclusions: Many programs have been proposed to find MITEs hidden in genomes. However, none of them are able to process large-scale genomes such as that of bread wheat. Furthermore, in many cases the existing methods perform high false-positive rates (or miss rates). The rice genome was used as reference to compare MITE Tracker against known tools. Our method turned out to be the most reliable in our tests. Indeed, it revealed more known elements, presented the lowest false-positive number and was the only program able to run with the bread wheat genome as input. In wheat, MITE Tracker discovered 6013 MITE families and allowed the first structural exploration of MITEs in the complete bread wheat genome.EEA Marcos JuárezFil: Crescente, Juan Manuel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zavallo, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Helguera, Marcelo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; ArgentinaFil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaBioMed Central2018-10-17T12:33:16Z2018-10-17T12:33:16Z2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/3607https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2376-y1471-2105https://doi.org/10.1186/s12859-018-2376-yBMC bioinformatics 19 : 348. (2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:47:37Zoai:localhost:20.500.12123/3607instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:47:37.949INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes |
title |
MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes |
spellingShingle |
MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes Crescente, Juan Manuel Arroz Trigo Triticum Aestivum Oryza Sativa Genomas Transposones Rice Wheat Genomes Transposons Transposable Element MITE Miniature Inverted-repeat Transposable Elements |
title_short |
MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes |
title_full |
MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes |
title_fullStr |
MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes |
title_full_unstemmed |
MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes |
title_sort |
MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes |
dc.creator.none.fl_str_mv |
Crescente, Juan Manuel Zavallo, Diego Helguera, Marcelo Vanzetti, Leonardo Sebastian |
author |
Crescente, Juan Manuel |
author_facet |
Crescente, Juan Manuel Zavallo, Diego Helguera, Marcelo Vanzetti, Leonardo Sebastian |
author_role |
author |
author2 |
Zavallo, Diego Helguera, Marcelo Vanzetti, Leonardo Sebastian |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Arroz Trigo Triticum Aestivum Oryza Sativa Genomas Transposones Rice Wheat Genomes Transposons Transposable Element MITE Miniature Inverted-repeat Transposable Elements |
topic |
Arroz Trigo Triticum Aestivum Oryza Sativa Genomas Transposones Rice Wheat Genomes Transposons Transposable Element MITE Miniature Inverted-repeat Transposable Elements |
dc.description.none.fl_txt_mv |
Background: Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements present in a high number of conserved copies in eukaryote genomes. An accurate identification of these elements can help to shed light on the mechanisms controlling genome evolution and gene regulation. The structure and distribution of these elements are well-defined and therefore computational approaches can be used to identify MITEs sequences. Results: Here we describe MITE Tracker, a novel, open source software program that finds and classifies MITEs using an efficient alignment strategy to retrieve nearby inverted-repeat sequences from large genomes. This program groups them into high sequence homology families using a fast clustering algorithm and finally filters only those elements that were likely transposed from different genomic locations because of their low scoring flanking sequence alignment. Conclusions: Many programs have been proposed to find MITEs hidden in genomes. However, none of them are able to process large-scale genomes such as that of bread wheat. Furthermore, in many cases the existing methods perform high false-positive rates (or miss rates). The rice genome was used as reference to compare MITE Tracker against known tools. Our method turned out to be the most reliable in our tests. Indeed, it revealed more known elements, presented the lowest false-positive number and was the only program able to run with the bread wheat genome as input. In wheat, MITE Tracker discovered 6013 MITE families and allowed the first structural exploration of MITEs in the complete bread wheat genome. EEA Marcos Juárez Fil: Crescente, Juan Manuel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zavallo, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina Fil: Helguera, Marcelo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina Fil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Background: Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements present in a high number of conserved copies in eukaryote genomes. An accurate identification of these elements can help to shed light on the mechanisms controlling genome evolution and gene regulation. The structure and distribution of these elements are well-defined and therefore computational approaches can be used to identify MITEs sequences. Results: Here we describe MITE Tracker, a novel, open source software program that finds and classifies MITEs using an efficient alignment strategy to retrieve nearby inverted-repeat sequences from large genomes. This program groups them into high sequence homology families using a fast clustering algorithm and finally filters only those elements that were likely transposed from different genomic locations because of their low scoring flanking sequence alignment. Conclusions: Many programs have been proposed to find MITEs hidden in genomes. However, none of them are able to process large-scale genomes such as that of bread wheat. Furthermore, in many cases the existing methods perform high false-positive rates (or miss rates). The rice genome was used as reference to compare MITE Tracker against known tools. Our method turned out to be the most reliable in our tests. Indeed, it revealed more known elements, presented the lowest false-positive number and was the only program able to run with the bread wheat genome as input. In wheat, MITE Tracker discovered 6013 MITE families and allowed the first structural exploration of MITEs in the complete bread wheat genome. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10-17T12:33:16Z 2018-10-17T12:33:16Z 2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/3607 https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2376-y 1471-2105 https://doi.org/10.1186/s12859-018-2376-y |
url |
http://hdl.handle.net/20.500.12123/3607 https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2376-y https://doi.org/10.1186/s12859-018-2376-y |
identifier_str_mv |
1471-2105 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
BioMed Central |
publisher.none.fl_str_mv |
BioMed Central |
dc.source.none.fl_str_mv |
BMC bioinformatics 19 : 348. (2018) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341359435907072 |
score |
12.623145 |