Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycle
- Autores
- Gonzalez, Magali Lucia Rosa; Valero, Eva; Chimeno, Selva Valeria; Garrido Fernandez, Antonio; Rodriguez Gomez, Francisco; Rojo, Cecilia; Paolinelli, Marcos; Arroyo Lopez, Francisco Noe; Combina, Mariana; Mercado, Laura Analia
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Saccharomyces cerevisiae isolates from grapes, soil, vine bark and buds collected at seven phenological stages of an annual growth cycle, were molecular typed by Microsatellite Multiplex PCR. Subsequently 30 S. cerevisiae genotypes were selected and the effect of vineyard environmental stressors, in both sublethal upper and lower levels, on their growth parameters was evaluated. The effect of low and high temperature (7–40 ◦C), pH (2.5–8.0), glucose concentration (3.0–300.0 g/L), nitrogen concentration (0.008–8.0 g/L), and copper presence (24 mg/L) were modelled individually using the reparametrized Gompertz equation. Multivariate ANOVA and Generalized Procrustes Analysis were used to determine the environmental stressor’s influence over the lag phase (λ) and the maximum specific growth rate (μmax). Both parameters were significantly affected by the S. cerevisiae genotype, the treatments, and the interaction between them. Despite a generalized reduction in μmax and a variable answer in λ, the 30 S. cerevisiae genotypes were able to overcome all the treatments. Extreme glucose limitation, copper presence and low temperature had the highest impact over the growth parameters. Interestingly, ten genotypes mostly distributed in the vineyard were the least affected, suggesting a greater acclimatization fitness and the possibility to persist in the changing conditions of the vine annual cycle.
EEA Mendoza
Fil: Gonzalez, Magali Lucia Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gonzalez, Magali Lucia Rosa. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina
Fil: Valero, Eva. Universidad Pablo de Olavide. Departamento de Biología Molecular e Ingeniería Bioquímica; España
Fil: Chimeno, Selva Valeria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina
Fil: Garrido Fernandez, Antonio. Universidad Pablo de Olavide. Departamento de Biotecnología de Alimentos, Instituto de la Grasa (IG); España. Consejo Superior de Investigaciones Científicas (CSIC); España
Fil: Rodriguez Gomez, Francisco. Universidad Pablo de Olavide. Departamento de Biotecnología de Alimentos, Instituto de la Grasa (IG); España. Consejo Superior de Investigaciones Científicas (CSIC); España
Fil: Rojo, Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina
Fil: Rojo, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Paolinelli, Marcos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina
Fil: Arroyo Lopez, Francisco Noe. Universidad Pablo de Olavide. Departamento de Biotecnología de Alimentos, Instituto de la Grasa (IG); España. Consejo Superior de Investigaciones Científicas (CSIC); España
Fil: Combina, Mariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina
Fil: Mercado, Laura Analia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina - Fuente
- LWT, Food Science and Technology 158 : 113157 (2022)
- Materia
-
Vid
Levadura
Identificación
Microsatélites
Saccharomyces cerevisiae
Grapevines
Yeasts
Identification
Microsatellites - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/11335
Ver los metadatos del registro completo
id |
INTADig_1b9d9c29535854f3a245a7aa122f4fcc |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/11335 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycleGonzalez, Magali Lucia RosaValero, EvaChimeno, Selva ValeriaGarrido Fernandez, AntonioRodriguez Gomez, FranciscoRojo, CeciliaPaolinelli, MarcosArroyo Lopez, Francisco NoeCombina, MarianaMercado, Laura AnaliaVidLevaduraIdentificaciónMicrosatélitesSaccharomyces cerevisiaeGrapevinesYeastsIdentificationMicrosatellitesSaccharomyces cerevisiae isolates from grapes, soil, vine bark and buds collected at seven phenological stages of an annual growth cycle, were molecular typed by Microsatellite Multiplex PCR. Subsequently 30 S. cerevisiae genotypes were selected and the effect of vineyard environmental stressors, in both sublethal upper and lower levels, on their growth parameters was evaluated. The effect of low and high temperature (7–40 ◦C), pH (2.5–8.0), glucose concentration (3.0–300.0 g/L), nitrogen concentration (0.008–8.0 g/L), and copper presence (24 mg/L) were modelled individually using the reparametrized Gompertz equation. Multivariate ANOVA and Generalized Procrustes Analysis were used to determine the environmental stressor’s influence over the lag phase (λ) and the maximum specific growth rate (μmax). Both parameters were significantly affected by the S. cerevisiae genotype, the treatments, and the interaction between them. Despite a generalized reduction in μmax and a variable answer in λ, the 30 S. cerevisiae genotypes were able to overcome all the treatments. Extreme glucose limitation, copper presence and low temperature had the highest impact over the growth parameters. Interestingly, ten genotypes mostly distributed in the vineyard were the least affected, suggesting a greater acclimatization fitness and the possibility to persist in the changing conditions of the vine annual cycle.EEA MendozaFil: Gonzalez, Magali Lucia Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gonzalez, Magali Lucia Rosa. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Valero, Eva. Universidad Pablo de Olavide. Departamento de Biología Molecular e Ingeniería Bioquímica; EspañaFil: Chimeno, Selva Valeria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Garrido Fernandez, Antonio. Universidad Pablo de Olavide. Departamento de Biotecnología de Alimentos, Instituto de la Grasa (IG); España. Consejo Superior de Investigaciones Científicas (CSIC); EspañaFil: Rodriguez Gomez, Francisco. Universidad Pablo de Olavide. Departamento de Biotecnología de Alimentos, Instituto de la Grasa (IG); España. Consejo Superior de Investigaciones Científicas (CSIC); EspañaFil: Rojo, Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Rojo, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paolinelli, Marcos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Arroyo Lopez, Francisco Noe. Universidad Pablo de Olavide. Departamento de Biotecnología de Alimentos, Instituto de la Grasa (IG); España. Consejo Superior de Investigaciones Científicas (CSIC); EspañaFil: Combina, Mariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Mercado, Laura Analia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaElsevier2022-03-08T16:25:17Z2022-03-08T16:25:17Z2022-03-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/11335https://www.sciencedirect.com/science/article/pii/S00236438220009250023-6438https://doi.org/10.1016/j.lwt.2022.113157LWT, Food Science and Technology 158 : 113157 (2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2019-PE-E6-I114-001/2019-PE-E6-I114-001/AR./Caracterización de la diversidad genética de plantas, animales y microorganismos mediante herramientas de genómica aplicada.info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:49:17Zoai:localhost:20.500.12123/11335instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:49:17.691INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycle |
title |
Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycle |
spellingShingle |
Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycle Gonzalez, Magali Lucia Rosa Vid Levadura Identificación Microsatélites Saccharomyces cerevisiae Grapevines Yeasts Identification Microsatellites |
title_short |
Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycle |
title_full |
Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycle |
title_fullStr |
Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycle |
title_full_unstemmed |
Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycle |
title_sort |
Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycle |
dc.creator.none.fl_str_mv |
Gonzalez, Magali Lucia Rosa Valero, Eva Chimeno, Selva Valeria Garrido Fernandez, Antonio Rodriguez Gomez, Francisco Rojo, Cecilia Paolinelli, Marcos Arroyo Lopez, Francisco Noe Combina, Mariana Mercado, Laura Analia |
author |
Gonzalez, Magali Lucia Rosa |
author_facet |
Gonzalez, Magali Lucia Rosa Valero, Eva Chimeno, Selva Valeria Garrido Fernandez, Antonio Rodriguez Gomez, Francisco Rojo, Cecilia Paolinelli, Marcos Arroyo Lopez, Francisco Noe Combina, Mariana Mercado, Laura Analia |
author_role |
author |
author2 |
Valero, Eva Chimeno, Selva Valeria Garrido Fernandez, Antonio Rodriguez Gomez, Francisco Rojo, Cecilia Paolinelli, Marcos Arroyo Lopez, Francisco Noe Combina, Mariana Mercado, Laura Analia |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
Vid Levadura Identificación Microsatélites Saccharomyces cerevisiae Grapevines Yeasts Identification Microsatellites |
topic |
Vid Levadura Identificación Microsatélites Saccharomyces cerevisiae Grapevines Yeasts Identification Microsatellites |
dc.description.none.fl_txt_mv |
Saccharomyces cerevisiae isolates from grapes, soil, vine bark and buds collected at seven phenological stages of an annual growth cycle, were molecular typed by Microsatellite Multiplex PCR. Subsequently 30 S. cerevisiae genotypes were selected and the effect of vineyard environmental stressors, in both sublethal upper and lower levels, on their growth parameters was evaluated. The effect of low and high temperature (7–40 ◦C), pH (2.5–8.0), glucose concentration (3.0–300.0 g/L), nitrogen concentration (0.008–8.0 g/L), and copper presence (24 mg/L) were modelled individually using the reparametrized Gompertz equation. Multivariate ANOVA and Generalized Procrustes Analysis were used to determine the environmental stressor’s influence over the lag phase (λ) and the maximum specific growth rate (μmax). Both parameters were significantly affected by the S. cerevisiae genotype, the treatments, and the interaction between them. Despite a generalized reduction in μmax and a variable answer in λ, the 30 S. cerevisiae genotypes were able to overcome all the treatments. Extreme glucose limitation, copper presence and low temperature had the highest impact over the growth parameters. Interestingly, ten genotypes mostly distributed in the vineyard were the least affected, suggesting a greater acclimatization fitness and the possibility to persist in the changing conditions of the vine annual cycle. EEA Mendoza Fil: Gonzalez, Magali Lucia Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gonzalez, Magali Lucia Rosa. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina Fil: Valero, Eva. Universidad Pablo de Olavide. Departamento de Biología Molecular e Ingeniería Bioquímica; España Fil: Chimeno, Selva Valeria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina Fil: Garrido Fernandez, Antonio. Universidad Pablo de Olavide. Departamento de Biotecnología de Alimentos, Instituto de la Grasa (IG); España. Consejo Superior de Investigaciones Científicas (CSIC); España Fil: Rodriguez Gomez, Francisco. Universidad Pablo de Olavide. Departamento de Biotecnología de Alimentos, Instituto de la Grasa (IG); España. Consejo Superior de Investigaciones Científicas (CSIC); España Fil: Rojo, Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina Fil: Rojo, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Paolinelli, Marcos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina Fil: Arroyo Lopez, Francisco Noe. Universidad Pablo de Olavide. Departamento de Biotecnología de Alimentos, Instituto de la Grasa (IG); España. Consejo Superior de Investigaciones Científicas (CSIC); España Fil: Combina, Mariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina Fil: Mercado, Laura Analia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina |
description |
Saccharomyces cerevisiae isolates from grapes, soil, vine bark and buds collected at seven phenological stages of an annual growth cycle, were molecular typed by Microsatellite Multiplex PCR. Subsequently 30 S. cerevisiae genotypes were selected and the effect of vineyard environmental stressors, in both sublethal upper and lower levels, on their growth parameters was evaluated. The effect of low and high temperature (7–40 ◦C), pH (2.5–8.0), glucose concentration (3.0–300.0 g/L), nitrogen concentration (0.008–8.0 g/L), and copper presence (24 mg/L) were modelled individually using the reparametrized Gompertz equation. Multivariate ANOVA and Generalized Procrustes Analysis were used to determine the environmental stressor’s influence over the lag phase (λ) and the maximum specific growth rate (μmax). Both parameters were significantly affected by the S. cerevisiae genotype, the treatments, and the interaction between them. Despite a generalized reduction in μmax and a variable answer in λ, the 30 S. cerevisiae genotypes were able to overcome all the treatments. Extreme glucose limitation, copper presence and low temperature had the highest impact over the growth parameters. Interestingly, ten genotypes mostly distributed in the vineyard were the least affected, suggesting a greater acclimatization fitness and the possibility to persist in the changing conditions of the vine annual cycle. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-08T16:25:17Z 2022-03-08T16:25:17Z 2022-03-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/11335 https://www.sciencedirect.com/science/article/pii/S0023643822000925 0023-6438 https://doi.org/10.1016/j.lwt.2022.113157 |
url |
http://hdl.handle.net/20.500.12123/11335 https://www.sciencedirect.com/science/article/pii/S0023643822000925 https://doi.org/10.1016/j.lwt.2022.113157 |
identifier_str_mv |
0023-6438 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/2019-PE-E6-I114-001/2019-PE-E6-I114-001/AR./Caracterización de la diversidad genética de plantas, animales y microorganismos mediante herramientas de genómica aplicada. |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
LWT, Food Science and Technology 158 : 113157 (2022) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341394553765888 |
score |
12.623145 |