Redox systemic signaling and induced tolerance responses during soybean–bradyrhizobium japonicum interaction: involvement of nod factor receptor and autoregulation of nodulation

Autores
Fernandez Göbel, Tadeo Francisco; Deanna, Rocío; Muñoz, Nacira Belen; Robert, German; Asurmendi, Sebastian; Lascano, Hernan Ramiro
Año de publicación
2019
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The symbiotic relationship between legumes and nitrogen-fixing rhizobia induces local and systemic responses, which ultimately lead to nodule formation. The autoregulation of nodulation (AON) is a systemic mechanism related to innate immunity that controls nodule development and involves different components ranging from hormones, peptides, receptors to small RNAs. Here, we characterized a rapid systemic redox changes induced during soybean-Bradyrhizobium japonicum symbiotic interaction. A transient peak of reactive oxygen species (ROS) generation was found in soybean leaves after 30 min of root inoculation with B. japonicum. The ROS response was accompanied by changes in the redox state of glutathione and by activation of antioxidant enzymes. Moreover, the ROS peak and antioxidant enzyme activation were abolished in leaves by the addition, in either root or leaf, of DPI, an NADPH oxidase inhibitor. Likewise, these systemic redox changes primed the plant increasing its tolerance to photooxidative stress. With the use of non-nodulating nfr5-mutant and hyper-nodulating nark-mutant soybean plants, we subsequently studied the systemic redox changes. The nfr5-mutant lacked the systemic redox changes after inoculation, whereas the nark-mutant showed a similar redox systemic signaling than the wild type plants. However, neither nfr5- nor nark-mutant exhibited tolerance to photooxidative stress condition. Altogether, these results demonstrated that (i) the early redox systemic signaling during symbiotic interaction depends on a Nod factor receptor, and that (ii) the induced tolerance response depends on the AON mechanisms.
Instituto de Biotecnología
Fil: Fernandez Göbel, Tadeo Francisco. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina.
Fil: Deanna, Rocío. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Ciencias Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muñoz, Nacira Belen. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Fisiología Vegetal; Argentina
Fil: Robert, German. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Fisiología Vegetal; Argentina
Fil: Asurmendi, Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lascano, Hernan Ramiro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Fisiología Vegetal; Argentina
Fuente
Frontiers in plant science 10: 141 (2019 Feb 15)
Materia
Rhizobiaceae
Rhizobium
Simbiosis
Nodulación
Bradyrhizobium Japonicum
Soja
Symbiosis
Root Nodulation
Soybeans
Redox Potential
Potencial Redox
ISR/PGPR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/6090

id INTADig_197f45207c421ad2c8bd8dbde53aadc9
oai_identifier_str oai:localhost:20.500.12123/6090
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Redox systemic signaling and induced tolerance responses during soybean–bradyrhizobium japonicum interaction: involvement of nod factor receptor and autoregulation of nodulationFernandez Göbel, Tadeo FranciscoDeanna, RocíoMuñoz, Nacira BelenRobert, GermanAsurmendi, SebastianLascano, Hernan RamiroRhizobiaceaeRhizobiumSimbiosisNodulaciónBradyrhizobium JaponicumSojaSymbiosisRoot NodulationSoybeansRedox PotentialPotencial RedoxISR/PGPRThe symbiotic relationship between legumes and nitrogen-fixing rhizobia induces local and systemic responses, which ultimately lead to nodule formation. The autoregulation of nodulation (AON) is a systemic mechanism related to innate immunity that controls nodule development and involves different components ranging from hormones, peptides, receptors to small RNAs. Here, we characterized a rapid systemic redox changes induced during soybean-Bradyrhizobium japonicum symbiotic interaction. A transient peak of reactive oxygen species (ROS) generation was found in soybean leaves after 30 min of root inoculation with B. japonicum. The ROS response was accompanied by changes in the redox state of glutathione and by activation of antioxidant enzymes. Moreover, the ROS peak and antioxidant enzyme activation were abolished in leaves by the addition, in either root or leaf, of DPI, an NADPH oxidase inhibitor. Likewise, these systemic redox changes primed the plant increasing its tolerance to photooxidative stress. With the use of non-nodulating nfr5-mutant and hyper-nodulating nark-mutant soybean plants, we subsequently studied the systemic redox changes. The nfr5-mutant lacked the systemic redox changes after inoculation, whereas the nark-mutant showed a similar redox systemic signaling than the wild type plants. However, neither nfr5- nor nark-mutant exhibited tolerance to photooxidative stress condition. Altogether, these results demonstrated that (i) the early redox systemic signaling during symbiotic interaction depends on a Nod factor receptor, and that (ii) the induced tolerance response depends on the AON mechanisms.Instituto de BiotecnologíaFil: Fernandez Göbel, Tadeo Francisco. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina.Fil: Deanna, Rocío. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Ciencias Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muñoz, Nacira Belen. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Fisiología Vegetal; ArgentinaFil: Robert, German. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Fisiología Vegetal; ArgentinaFil: Asurmendi, Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lascano, Hernan Ramiro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Fisiología Vegetal; ArgentinaFrontiers Media2019-10-10T15:09:28Z2019-10-10T15:09:28Z2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/6090https://www.frontiersin.org/articles/10.3389/fpls.2019.00141/full1664-462Xhttps://doi.org/10.3389/fpls.2019.00141Frontiers in plant science 10: 141 (2019 Feb 15)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaspainfo:eu-repograntAgreement/INTA/PNBIO/1131022/AR./Genómica funcional y biología de sistemas.info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:44:47Zoai:localhost:20.500.12123/6090instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:47.801INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Redox systemic signaling and induced tolerance responses during soybean–bradyrhizobium japonicum interaction: involvement of nod factor receptor and autoregulation of nodulation
title Redox systemic signaling and induced tolerance responses during soybean–bradyrhizobium japonicum interaction: involvement of nod factor receptor and autoregulation of nodulation
spellingShingle Redox systemic signaling and induced tolerance responses during soybean–bradyrhizobium japonicum interaction: involvement of nod factor receptor and autoregulation of nodulation
Fernandez Göbel, Tadeo Francisco
Rhizobiaceae
Rhizobium
Simbiosis
Nodulación
Bradyrhizobium Japonicum
Soja
Symbiosis
Root Nodulation
Soybeans
Redox Potential
Potencial Redox
ISR/PGPR
title_short Redox systemic signaling and induced tolerance responses during soybean–bradyrhizobium japonicum interaction: involvement of nod factor receptor and autoregulation of nodulation
title_full Redox systemic signaling and induced tolerance responses during soybean–bradyrhizobium japonicum interaction: involvement of nod factor receptor and autoregulation of nodulation
title_fullStr Redox systemic signaling and induced tolerance responses during soybean–bradyrhizobium japonicum interaction: involvement of nod factor receptor and autoregulation of nodulation
title_full_unstemmed Redox systemic signaling and induced tolerance responses during soybean–bradyrhizobium japonicum interaction: involvement of nod factor receptor and autoregulation of nodulation
title_sort Redox systemic signaling and induced tolerance responses during soybean–bradyrhizobium japonicum interaction: involvement of nod factor receptor and autoregulation of nodulation
dc.creator.none.fl_str_mv Fernandez Göbel, Tadeo Francisco
Deanna, Rocío
Muñoz, Nacira Belen
Robert, German
Asurmendi, Sebastian
Lascano, Hernan Ramiro
author Fernandez Göbel, Tadeo Francisco
author_facet Fernandez Göbel, Tadeo Francisco
Deanna, Rocío
Muñoz, Nacira Belen
Robert, German
Asurmendi, Sebastian
Lascano, Hernan Ramiro
author_role author
author2 Deanna, Rocío
Muñoz, Nacira Belen
Robert, German
Asurmendi, Sebastian
Lascano, Hernan Ramiro
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Rhizobiaceae
Rhizobium
Simbiosis
Nodulación
Bradyrhizobium Japonicum
Soja
Symbiosis
Root Nodulation
Soybeans
Redox Potential
Potencial Redox
ISR/PGPR
topic Rhizobiaceae
Rhizobium
Simbiosis
Nodulación
Bradyrhizobium Japonicum
Soja
Symbiosis
Root Nodulation
Soybeans
Redox Potential
Potencial Redox
ISR/PGPR
dc.description.none.fl_txt_mv The symbiotic relationship between legumes and nitrogen-fixing rhizobia induces local and systemic responses, which ultimately lead to nodule formation. The autoregulation of nodulation (AON) is a systemic mechanism related to innate immunity that controls nodule development and involves different components ranging from hormones, peptides, receptors to small RNAs. Here, we characterized a rapid systemic redox changes induced during soybean-Bradyrhizobium japonicum symbiotic interaction. A transient peak of reactive oxygen species (ROS) generation was found in soybean leaves after 30 min of root inoculation with B. japonicum. The ROS response was accompanied by changes in the redox state of glutathione and by activation of antioxidant enzymes. Moreover, the ROS peak and antioxidant enzyme activation were abolished in leaves by the addition, in either root or leaf, of DPI, an NADPH oxidase inhibitor. Likewise, these systemic redox changes primed the plant increasing its tolerance to photooxidative stress. With the use of non-nodulating nfr5-mutant and hyper-nodulating nark-mutant soybean plants, we subsequently studied the systemic redox changes. The nfr5-mutant lacked the systemic redox changes after inoculation, whereas the nark-mutant showed a similar redox systemic signaling than the wild type plants. However, neither nfr5- nor nark-mutant exhibited tolerance to photooxidative stress condition. Altogether, these results demonstrated that (i) the early redox systemic signaling during symbiotic interaction depends on a Nod factor receptor, and that (ii) the induced tolerance response depends on the AON mechanisms.
Instituto de Biotecnología
Fil: Fernandez Göbel, Tadeo Francisco. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina.
Fil: Deanna, Rocío. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Ciencias Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muñoz, Nacira Belen. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Fisiología Vegetal; Argentina
Fil: Robert, German. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Fisiología Vegetal; Argentina
Fil: Asurmendi, Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lascano, Hernan Ramiro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Fisiología Vegetal; Argentina
description The symbiotic relationship between legumes and nitrogen-fixing rhizobia induces local and systemic responses, which ultimately lead to nodule formation. The autoregulation of nodulation (AON) is a systemic mechanism related to innate immunity that controls nodule development and involves different components ranging from hormones, peptides, receptors to small RNAs. Here, we characterized a rapid systemic redox changes induced during soybean-Bradyrhizobium japonicum symbiotic interaction. A transient peak of reactive oxygen species (ROS) generation was found in soybean leaves after 30 min of root inoculation with B. japonicum. The ROS response was accompanied by changes in the redox state of glutathione and by activation of antioxidant enzymes. Moreover, the ROS peak and antioxidant enzyme activation were abolished in leaves by the addition, in either root or leaf, of DPI, an NADPH oxidase inhibitor. Likewise, these systemic redox changes primed the plant increasing its tolerance to photooxidative stress. With the use of non-nodulating nfr5-mutant and hyper-nodulating nark-mutant soybean plants, we subsequently studied the systemic redox changes. The nfr5-mutant lacked the systemic redox changes after inoculation, whereas the nark-mutant showed a similar redox systemic signaling than the wild type plants. However, neither nfr5- nor nark-mutant exhibited tolerance to photooxidative stress condition. Altogether, these results demonstrated that (i) the early redox systemic signaling during symbiotic interaction depends on a Nod factor receptor, and that (ii) the induced tolerance response depends on the AON mechanisms.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-10T15:09:28Z
2019-10-10T15:09:28Z
2019-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/6090
https://www.frontiersin.org/articles/10.3389/fpls.2019.00141/full
1664-462X
https://doi.org/10.3389/fpls.2019.00141
url http://hdl.handle.net/20.500.12123/6090
https://www.frontiersin.org/articles/10.3389/fpls.2019.00141/full
https://doi.org/10.3389/fpls.2019.00141
identifier_str_mv 1664-462X
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repograntAgreement/INTA/PNBIO/1131022/AR./Genómica funcional y biología de sistemas.
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv Frontiers in plant science 10: 141 (2019 Feb 15)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619138539978752
score 12.559606