Alfalfa genomic selection for different stress-prone growing regions
- Autores
- Annicchiarico, Paolo; Nazzicari, Nelson; Bouizgaren, Abdelaziz; Hayek, Taoufik; Laouar, Meriem; Cornacchione, Monica; Basigalup, Daniel Horacio; Monterrubio Martin, Cristina; Brummer, Edward Charles; Pecetti, Luciano
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Alfalfa (Medicago sativa L.) selection for stress-prone regions has high priority for sustainable crop–livestock systems. This study assessed the genomic selection (GS) ability to predict alfalfa breeding values for drought-prone agricultural sites of Algeria, Morocco, and Argentina; managed-stress (MS) environments of Italy featuring moderate or intense drought; and one Tunisian site irrigated with moderately saline water. Additional aims were to investigate genotype × environment interaction (GEI) patterns and the effect on GS predictions of three single-nucleotide polymorphism (SNP) calling procedures, 12 statistical models that exclude or incorporate GEI, and allele dosage information. Our study included 127 genotypes from a Mediterranean reference population originated from three geographically contrasting populations, genotyped via genotyping-by-sequencing and phenotyped based on multi-year biomass dry matter yield of their dense-planted half-sib progenies. The GEI was very large, as shown by 27-fold greater additive genetic variance × environment interaction relative to the additive genetic variance and low genetic correlation for progeny yield responses across environments. The predictive ability of GS (using at least 37,969 SNP markers) exceeded 0.20 for moderate MS (representing Italian stress-prone sites) and the sites of Algeria and Argentina while being quite low for the Tunisian site and intense MS. Predictions of GS were complicated by rapid linkage disequilibrium decay. The weighted GBLUP model, GEI incorporation into GS models, and SNP calling based on a mock reference genome exhibited a predictive ability advantage for some environments. Our results support the specific breeding for each target region and suggest a positive role for GS in most regions when considering the challenges associated with phenotypic selection.
EEA Santiago del Estero
Fil: Annicchiarico, Paolo. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Centro di Ricerca Zootecnia e Acquacoltura; Italia
Fil: Nazzicari, Nelson. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Centro di Ricerca Zootecnia e Acquacoltura; Italia
Fil: Bouizgaren, Abdelaziz. Institut National de la Recherche Agronomique du Maroc. Centres Régionaux de Marrakech et de Rabat; Marruecos
Fil: Hayek, Taoufik. Institut des Régions Arides de Médenine; Tunez
Fil: Laouar, Meriem. Ecole Nationale Supérieure Agronomique. Dép. de Productions Végétales. Laboratoire d’Amélioration Intégrative des Productions Végétales; Argelia
Fil: Cornacchione, Monica. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; Argentina
Fil: Basigalup, Daniel Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Grupo de Mejoramiento Genético de Alfalfa; Argentina
Fil: Monterrubio Martin, Cristina. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Centro di Ricerca Zootecnia e Acquacoltura; Italia
Fil: Brummer, E. Charles. University of California at Davies. Depeparment of Plant Sciences. Plant Breeding Center,; Estados Unidos
Fil: Pecetti, Luciano. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Centro di Ricerca Zootecnia e Acquacoltura; Italia - Fuente
- The Plant Genome : e20264 (First published: 12 October 2022)
- Materia
-
Medicago sativa
Selección Asistida por Marcadores
Valor Genético
Estres
Estrés de Sequia
Marker-assisted Selection
Breeding Value
Stress
Drought Stress
Alfalfa
Selección Genómica
Lucerne
Genomic Selection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/13132
Ver los metadatos del registro completo
id |
INTADig_037ffa9210780ff19ee4b9f36db666e0 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/13132 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Alfalfa genomic selection for different stress-prone growing regionsAnnicchiarico, PaoloNazzicari, NelsonBouizgaren, AbdelazizHayek, TaoufikLaouar, MeriemCornacchione, MonicaBasigalup, Daniel HoracioMonterrubio Martin, CristinaBrummer, Edward CharlesPecetti, LucianoMedicago sativaSelección Asistida por MarcadoresValor GenéticoEstresEstrés de SequiaMarker-assisted SelectionBreeding ValueStressDrought StressAlfalfaSelección GenómicaLucerneGenomic SelectionAlfalfa (Medicago sativa L.) selection for stress-prone regions has high priority for sustainable crop–livestock systems. This study assessed the genomic selection (GS) ability to predict alfalfa breeding values for drought-prone agricultural sites of Algeria, Morocco, and Argentina; managed-stress (MS) environments of Italy featuring moderate or intense drought; and one Tunisian site irrigated with moderately saline water. Additional aims were to investigate genotype × environment interaction (GEI) patterns and the effect on GS predictions of three single-nucleotide polymorphism (SNP) calling procedures, 12 statistical models that exclude or incorporate GEI, and allele dosage information. Our study included 127 genotypes from a Mediterranean reference population originated from three geographically contrasting populations, genotyped via genotyping-by-sequencing and phenotyped based on multi-year biomass dry matter yield of their dense-planted half-sib progenies. The GEI was very large, as shown by 27-fold greater additive genetic variance × environment interaction relative to the additive genetic variance and low genetic correlation for progeny yield responses across environments. The predictive ability of GS (using at least 37,969 SNP markers) exceeded 0.20 for moderate MS (representing Italian stress-prone sites) and the sites of Algeria and Argentina while being quite low for the Tunisian site and intense MS. Predictions of GS were complicated by rapid linkage disequilibrium decay. The weighted GBLUP model, GEI incorporation into GS models, and SNP calling based on a mock reference genome exhibited a predictive ability advantage for some environments. Our results support the specific breeding for each target region and suggest a positive role for GS in most regions when considering the challenges associated with phenotypic selection.EEA Santiago del EsteroFil: Annicchiarico, Paolo. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Centro di Ricerca Zootecnia e Acquacoltura; ItaliaFil: Nazzicari, Nelson. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Centro di Ricerca Zootecnia e Acquacoltura; ItaliaFil: Bouizgaren, Abdelaziz. Institut National de la Recherche Agronomique du Maroc. Centres Régionaux de Marrakech et de Rabat; MarruecosFil: Hayek, Taoufik. Institut des Régions Arides de Médenine; TunezFil: Laouar, Meriem. Ecole Nationale Supérieure Agronomique. Dép. de Productions Végétales. Laboratoire d’Amélioration Intégrative des Productions Végétales; ArgeliaFil: Cornacchione, Monica. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; ArgentinaFil: Basigalup, Daniel Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Grupo de Mejoramiento Genético de Alfalfa; ArgentinaFil: Monterrubio Martin, Cristina. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Centro di Ricerca Zootecnia e Acquacoltura; ItaliaFil: Brummer, E. Charles. University of California at Davies. Depeparment of Plant Sciences. Plant Breeding Center,; Estados UnidosFil: Pecetti, Luciano. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Centro di Ricerca Zootecnia e Acquacoltura; ItaliaWiley2022-10-17T14:04:18Z2022-10-17T14:04:18Z2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/13132https://acsess.onlinelibrary.wiley.com/doi/10.1002/tpg2.202641940-3372https://doi.org/10.1002/tpg2.20264The Plant Genome : e20264 (First published: 12 October 2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-23T11:18:08Zoai:localhost:20.500.12123/13132instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-23 11:18:09.326INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Alfalfa genomic selection for different stress-prone growing regions |
title |
Alfalfa genomic selection for different stress-prone growing regions |
spellingShingle |
Alfalfa genomic selection for different stress-prone growing regions Annicchiarico, Paolo Medicago sativa Selección Asistida por Marcadores Valor Genético Estres Estrés de Sequia Marker-assisted Selection Breeding Value Stress Drought Stress Alfalfa Selección Genómica Lucerne Genomic Selection |
title_short |
Alfalfa genomic selection for different stress-prone growing regions |
title_full |
Alfalfa genomic selection for different stress-prone growing regions |
title_fullStr |
Alfalfa genomic selection for different stress-prone growing regions |
title_full_unstemmed |
Alfalfa genomic selection for different stress-prone growing regions |
title_sort |
Alfalfa genomic selection for different stress-prone growing regions |
dc.creator.none.fl_str_mv |
Annicchiarico, Paolo Nazzicari, Nelson Bouizgaren, Abdelaziz Hayek, Taoufik Laouar, Meriem Cornacchione, Monica Basigalup, Daniel Horacio Monterrubio Martin, Cristina Brummer, Edward Charles Pecetti, Luciano |
author |
Annicchiarico, Paolo |
author_facet |
Annicchiarico, Paolo Nazzicari, Nelson Bouizgaren, Abdelaziz Hayek, Taoufik Laouar, Meriem Cornacchione, Monica Basigalup, Daniel Horacio Monterrubio Martin, Cristina Brummer, Edward Charles Pecetti, Luciano |
author_role |
author |
author2 |
Nazzicari, Nelson Bouizgaren, Abdelaziz Hayek, Taoufik Laouar, Meriem Cornacchione, Monica Basigalup, Daniel Horacio Monterrubio Martin, Cristina Brummer, Edward Charles Pecetti, Luciano |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
Medicago sativa Selección Asistida por Marcadores Valor Genético Estres Estrés de Sequia Marker-assisted Selection Breeding Value Stress Drought Stress Alfalfa Selección Genómica Lucerne Genomic Selection |
topic |
Medicago sativa Selección Asistida por Marcadores Valor Genético Estres Estrés de Sequia Marker-assisted Selection Breeding Value Stress Drought Stress Alfalfa Selección Genómica Lucerne Genomic Selection |
dc.description.none.fl_txt_mv |
Alfalfa (Medicago sativa L.) selection for stress-prone regions has high priority for sustainable crop–livestock systems. This study assessed the genomic selection (GS) ability to predict alfalfa breeding values for drought-prone agricultural sites of Algeria, Morocco, and Argentina; managed-stress (MS) environments of Italy featuring moderate or intense drought; and one Tunisian site irrigated with moderately saline water. Additional aims were to investigate genotype × environment interaction (GEI) patterns and the effect on GS predictions of three single-nucleotide polymorphism (SNP) calling procedures, 12 statistical models that exclude or incorporate GEI, and allele dosage information. Our study included 127 genotypes from a Mediterranean reference population originated from three geographically contrasting populations, genotyped via genotyping-by-sequencing and phenotyped based on multi-year biomass dry matter yield of their dense-planted half-sib progenies. The GEI was very large, as shown by 27-fold greater additive genetic variance × environment interaction relative to the additive genetic variance and low genetic correlation for progeny yield responses across environments. The predictive ability of GS (using at least 37,969 SNP markers) exceeded 0.20 for moderate MS (representing Italian stress-prone sites) and the sites of Algeria and Argentina while being quite low for the Tunisian site and intense MS. Predictions of GS were complicated by rapid linkage disequilibrium decay. The weighted GBLUP model, GEI incorporation into GS models, and SNP calling based on a mock reference genome exhibited a predictive ability advantage for some environments. Our results support the specific breeding for each target region and suggest a positive role for GS in most regions when considering the challenges associated with phenotypic selection. EEA Santiago del Estero Fil: Annicchiarico, Paolo. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Centro di Ricerca Zootecnia e Acquacoltura; Italia Fil: Nazzicari, Nelson. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Centro di Ricerca Zootecnia e Acquacoltura; Italia Fil: Bouizgaren, Abdelaziz. Institut National de la Recherche Agronomique du Maroc. Centres Régionaux de Marrakech et de Rabat; Marruecos Fil: Hayek, Taoufik. Institut des Régions Arides de Médenine; Tunez Fil: Laouar, Meriem. Ecole Nationale Supérieure Agronomique. Dép. de Productions Végétales. Laboratoire d’Amélioration Intégrative des Productions Végétales; Argelia Fil: Cornacchione, Monica. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; Argentina Fil: Basigalup, Daniel Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Grupo de Mejoramiento Genético de Alfalfa; Argentina Fil: Monterrubio Martin, Cristina. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Centro di Ricerca Zootecnia e Acquacoltura; Italia Fil: Brummer, E. Charles. University of California at Davies. Depeparment of Plant Sciences. Plant Breeding Center,; Estados Unidos Fil: Pecetti, Luciano. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Centro di Ricerca Zootecnia e Acquacoltura; Italia |
description |
Alfalfa (Medicago sativa L.) selection for stress-prone regions has high priority for sustainable crop–livestock systems. This study assessed the genomic selection (GS) ability to predict alfalfa breeding values for drought-prone agricultural sites of Algeria, Morocco, and Argentina; managed-stress (MS) environments of Italy featuring moderate or intense drought; and one Tunisian site irrigated with moderately saline water. Additional aims were to investigate genotype × environment interaction (GEI) patterns and the effect on GS predictions of three single-nucleotide polymorphism (SNP) calling procedures, 12 statistical models that exclude or incorporate GEI, and allele dosage information. Our study included 127 genotypes from a Mediterranean reference population originated from three geographically contrasting populations, genotyped via genotyping-by-sequencing and phenotyped based on multi-year biomass dry matter yield of their dense-planted half-sib progenies. The GEI was very large, as shown by 27-fold greater additive genetic variance × environment interaction relative to the additive genetic variance and low genetic correlation for progeny yield responses across environments. The predictive ability of GS (using at least 37,969 SNP markers) exceeded 0.20 for moderate MS (representing Italian stress-prone sites) and the sites of Algeria and Argentina while being quite low for the Tunisian site and intense MS. Predictions of GS were complicated by rapid linkage disequilibrium decay. The weighted GBLUP model, GEI incorporation into GS models, and SNP calling based on a mock reference genome exhibited a predictive ability advantage for some environments. Our results support the specific breeding for each target region and suggest a positive role for GS in most regions when considering the challenges associated with phenotypic selection. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-17T14:04:18Z 2022-10-17T14:04:18Z 2022-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/13132 https://acsess.onlinelibrary.wiley.com/doi/10.1002/tpg2.20264 1940-3372 https://doi.org/10.1002/tpg2.20264 |
url |
http://hdl.handle.net/20.500.12123/13132 https://acsess.onlinelibrary.wiley.com/doi/10.1002/tpg2.20264 https://doi.org/10.1002/tpg2.20264 |
identifier_str_mv |
1940-3372 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
The Plant Genome : e20264 (First published: 12 October 2022) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846787563704025088 |
score |
12.982451 |