Remotely sensed spatiotemporal variation in crude protein of shortgrass steppe forage

Autores
Irisarri, Jorge Gonzalo Nicolás; Durante, Martín; Derner, Justin D.; Oesterheld, Martín; Augustine, David J.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Irisarri, Jorge Gonzalo Nicolás. Rothamsted Research. Sustainable Agriculture Sciences. North Wyke, Okehampton, UK.
Fil: Durante, Martín. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay (EEA Concepción del Uruguay). Entre Ríos, Argentina.
Fil: Durante, Martín. Instituto Nacional de Investigación Agropecuaria (INIA). Estación Experimental INIA Tacuarembó. Programa Pasturas y Forrajes. Tacuarembó, Uruguay.
Fil: Derner, Justin D. United State Department of Agriculture (USDA). Agricultural Research Service (ARS). Rangeland Resources and Systems Research Unit. Cheyenne, Wyoming, Estados Unidos.
Fil: Oesterheld, Martín. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
Fil: Oesterheld, Martín. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
Fil: Augustine, David J. United state department of agricultura (USDA). Agricultural Research Service (ARS). Rangeland Resources and Systems Research Unit. Fort Collins, Colorado, Estados Unidos.
In the Great Plains of central North America, sustainable livestock production is dependent on matching the timing of forage availability and quality with animal intake demands. Advances in remote sensing technology provide accurate information for forage quantity. However, similar efforts for forage quality are lacking. Crude protein (CP) content is one of the most relevant forage quality determinants of individual animal intake, especially below an 8% threshold for growing animals. In a set of shortgrass steppe paddocks with contrasting botanical composition, we (1) modeled the spatiotemporal variation in field estimates of CP content against seven spectral MODIS bands, and (2) used the model to assess the risk of reaching the 8% CP content threshold during the grazing season for paddocks with light, moderate, or heavy grazing intensities for the last 22 years (2000–2021). Our calibrated model explained up to 69% of the spatiotemporal variation in CP content. Different from previous investigations, our model was partially independent of NDVI, as it included the green and red portions of the spectrum as direct predictors of CP content. From 2000 to 2021, the model predicted that CP content was a limiting factor for growth of yearling cattle in 80% of the years for about 60% of the mid-May to October grazing season. The risk of forage quality being below the CP content threshold increases as the grazing season progresses, suggesting that ranchers across this rangeland region could benefit from remotely sensed CP content to proactively remove yearling cattle earlier than the traditional October date or to strategically provide supplemental protein sources to grazing cattle.
grafs., planos
Fuente
Remote Sens
Vol.14, no.4
art.854
http://www.mdpi.com
Materia
CRUDE PROTEIN THRESHOLD
FORAGE QUALITY
MOD09A1
SHORTGRASS RANGELAND
REMOTE SENSING
RISK ASSESSMENT
SEMI-ARID ENVIRONMENT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
acceso abierto
Repositorio
FAUBA Digital (UBA-FAUBA)
Institución
Universidad de Buenos Aires. Facultad de Agronomía
OAI Identificador
snrd:2022irisarri

id FAUBA_f5663376c299e4320209619cc7645f5f
oai_identifier_str snrd:2022irisarri
network_acronym_str FAUBA
repository_id_str 2729
network_name_str FAUBA Digital (UBA-FAUBA)
spelling Remotely sensed spatiotemporal variation in crude protein of shortgrass steppe forageIrisarri, Jorge Gonzalo NicolásDurante, MartínDerner, Justin D.Oesterheld, MartínAugustine, David J.CRUDE PROTEIN THRESHOLDFORAGE QUALITYMOD09A1SHORTGRASS RANGELANDREMOTE SENSINGRISK ASSESSMENTSEMI-ARID ENVIRONMENTFil: Irisarri, Jorge Gonzalo Nicolás. Rothamsted Research. Sustainable Agriculture Sciences. North Wyke, Okehampton, UK.Fil: Durante, Martín. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay (EEA Concepción del Uruguay). Entre Ríos, Argentina.Fil: Durante, Martín. Instituto Nacional de Investigación Agropecuaria (INIA). Estación Experimental INIA Tacuarembó. Programa Pasturas y Forrajes. Tacuarembó, Uruguay.Fil: Derner, Justin D. United State Department of Agriculture (USDA). Agricultural Research Service (ARS). Rangeland Resources and Systems Research Unit. Cheyenne, Wyoming, Estados Unidos.Fil: Oesterheld, Martín. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Fil: Oesterheld, Martín. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Fil: Augustine, David J. United state department of agricultura (USDA). Agricultural Research Service (ARS). Rangeland Resources and Systems Research Unit. Fort Collins, Colorado, Estados Unidos.In the Great Plains of central North America, sustainable livestock production is dependent on matching the timing of forage availability and quality with animal intake demands. Advances in remote sensing technology provide accurate information for forage quantity. However, similar efforts for forage quality are lacking. Crude protein (CP) content is one of the most relevant forage quality determinants of individual animal intake, especially below an 8% threshold for growing animals. In a set of shortgrass steppe paddocks with contrasting botanical composition, we (1) modeled the spatiotemporal variation in field estimates of CP content against seven spectral MODIS bands, and (2) used the model to assess the risk of reaching the 8% CP content threshold during the grazing season for paddocks with light, moderate, or heavy grazing intensities for the last 22 years (2000–2021). Our calibrated model explained up to 69% of the spatiotemporal variation in CP content. Different from previous investigations, our model was partially independent of NDVI, as it included the green and red portions of the spectrum as direct predictors of CP content. From 2000 to 2021, the model predicted that CP content was a limiting factor for growth of yearling cattle in 80% of the years for about 60% of the mid-May to October grazing season. The risk of forage quality being below the CP content threshold increases as the grazing season progresses, suggesting that ranchers across this rangeland region could benefit from remotely sensed CP content to proactively remove yearling cattle earlier than the traditional October date or to strategically provide supplemental protein sources to grazing cattle.grafs., planos2022info:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf10.3390/rs140408542072-4292http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2022irisarriRemote SensVol.14, no.4art.854http://www.mdpi.comreponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccesshttp://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section42025-09-29T13:42:06Zsnrd:2022irisarriinstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-29 13:42:06.775FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse
dc.title.none.fl_str_mv Remotely sensed spatiotemporal variation in crude protein of shortgrass steppe forage
title Remotely sensed spatiotemporal variation in crude protein of shortgrass steppe forage
spellingShingle Remotely sensed spatiotemporal variation in crude protein of shortgrass steppe forage
Irisarri, Jorge Gonzalo Nicolás
CRUDE PROTEIN THRESHOLD
FORAGE QUALITY
MOD09A1
SHORTGRASS RANGELAND
REMOTE SENSING
RISK ASSESSMENT
SEMI-ARID ENVIRONMENT
title_short Remotely sensed spatiotemporal variation in crude protein of shortgrass steppe forage
title_full Remotely sensed spatiotemporal variation in crude protein of shortgrass steppe forage
title_fullStr Remotely sensed spatiotemporal variation in crude protein of shortgrass steppe forage
title_full_unstemmed Remotely sensed spatiotemporal variation in crude protein of shortgrass steppe forage
title_sort Remotely sensed spatiotemporal variation in crude protein of shortgrass steppe forage
dc.creator.none.fl_str_mv Irisarri, Jorge Gonzalo Nicolás
Durante, Martín
Derner, Justin D.
Oesterheld, Martín
Augustine, David J.
author Irisarri, Jorge Gonzalo Nicolás
author_facet Irisarri, Jorge Gonzalo Nicolás
Durante, Martín
Derner, Justin D.
Oesterheld, Martín
Augustine, David J.
author_role author
author2 Durante, Martín
Derner, Justin D.
Oesterheld, Martín
Augustine, David J.
author2_role author
author
author
author
dc.subject.none.fl_str_mv CRUDE PROTEIN THRESHOLD
FORAGE QUALITY
MOD09A1
SHORTGRASS RANGELAND
REMOTE SENSING
RISK ASSESSMENT
SEMI-ARID ENVIRONMENT
topic CRUDE PROTEIN THRESHOLD
FORAGE QUALITY
MOD09A1
SHORTGRASS RANGELAND
REMOTE SENSING
RISK ASSESSMENT
SEMI-ARID ENVIRONMENT
dc.description.none.fl_txt_mv Fil: Irisarri, Jorge Gonzalo Nicolás. Rothamsted Research. Sustainable Agriculture Sciences. North Wyke, Okehampton, UK.
Fil: Durante, Martín. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay (EEA Concepción del Uruguay). Entre Ríos, Argentina.
Fil: Durante, Martín. Instituto Nacional de Investigación Agropecuaria (INIA). Estación Experimental INIA Tacuarembó. Programa Pasturas y Forrajes. Tacuarembó, Uruguay.
Fil: Derner, Justin D. United State Department of Agriculture (USDA). Agricultural Research Service (ARS). Rangeland Resources and Systems Research Unit. Cheyenne, Wyoming, Estados Unidos.
Fil: Oesterheld, Martín. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
Fil: Oesterheld, Martín. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
Fil: Augustine, David J. United state department of agricultura (USDA). Agricultural Research Service (ARS). Rangeland Resources and Systems Research Unit. Fort Collins, Colorado, Estados Unidos.
In the Great Plains of central North America, sustainable livestock production is dependent on matching the timing of forage availability and quality with animal intake demands. Advances in remote sensing technology provide accurate information for forage quantity. However, similar efforts for forage quality are lacking. Crude protein (CP) content is one of the most relevant forage quality determinants of individual animal intake, especially below an 8% threshold for growing animals. In a set of shortgrass steppe paddocks with contrasting botanical composition, we (1) modeled the spatiotemporal variation in field estimates of CP content against seven spectral MODIS bands, and (2) used the model to assess the risk of reaching the 8% CP content threshold during the grazing season for paddocks with light, moderate, or heavy grazing intensities for the last 22 years (2000–2021). Our calibrated model explained up to 69% of the spatiotemporal variation in CP content. Different from previous investigations, our model was partially independent of NDVI, as it included the green and red portions of the spectrum as direct predictors of CP content. From 2000 to 2021, the model predicted that CP content was a limiting factor for growth of yearling cattle in 80% of the years for about 60% of the mid-May to October grazing season. The risk of forage quality being below the CP content threshold increases as the grazing season progresses, suggesting that ranchers across this rangeland region could benefit from remotely sensed CP content to proactively remove yearling cattle earlier than the traditional October date or to strategically provide supplemental protein sources to grazing cattle.
grafs., planos
description Fil: Irisarri, Jorge Gonzalo Nicolás. Rothamsted Research. Sustainable Agriculture Sciences. North Wyke, Okehampton, UK.
publishDate 2022
dc.date.none.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv 10.3390/rs14040854
2072-4292
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2022irisarri
identifier_str_mv 10.3390/rs14040854
2072-4292
url http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2022irisarri
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
eu_rights_str_mv openAccess
rights_invalid_str_mv openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Remote Sens
Vol.14, no.4
art.854
http://www.mdpi.com
reponame:FAUBA Digital (UBA-FAUBA)
instname:Universidad de Buenos Aires. Facultad de Agronomía
reponame_str FAUBA Digital (UBA-FAUBA)
collection FAUBA Digital (UBA-FAUBA)
instname_str Universidad de Buenos Aires. Facultad de Agronomía
repository.name.fl_str_mv FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía
repository.mail.fl_str_mv martino@agro.uba.ar;berasa@agro.uba.ar
_version_ 1844618865369153536
score 13.070432