Spatial crop yield estimation based on remotely sensed stress index

Autores
Holzman, Mauro; Rivas, Raúl Eduardo; Bayala, Martín Ignacio; Ocampo, Dora; Carmona, Facundo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The improvement of methods to evaluate the real impact of soil moisture availability on crop systems is crucial because the importance for world economy and food production. The relationship between the remote sensed stress index TVDI, root-zone soil moisture and soybean yield was analyzed in a sandy region of Argentine Pampas. High correlation (R2 =0.68) between TVDI and soybean yield was observed. The obtained adjustment allows us to evaluate the spatial variability of yield during a humid and dry period 2-3 months before harvest. Since the method requires remote sensed data, it could be applied over areas with poor data coverage.
Materia
Oceanografía, Hidrología, Recursos Hídricos
stress index
remote sensing
soil moisture
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/8258

id CICBA_f883b4e55a69bb2fda17754921650f80
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/8258
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Spatial crop yield estimation based on remotely sensed stress indexHolzman, MauroRivas, Raúl EduardoBayala, Martín IgnacioOcampo, DoraCarmona, FacundoOceanografía, Hidrología, Recursos Hídricosstress indexremote sensingsoil moistureThe improvement of methods to evaluate the real impact of soil moisture availability on crop systems is crucial because the importance for world economy and food production. The relationship between the remote sensed stress index TVDI, root-zone soil moisture and soybean yield was analyzed in a sandy region of Argentine Pampas. High correlation (R2 =0.68) between TVDI and soybean yield was observed. The obtained adjustment allows us to evaluate the spatial variability of yield during a humid and dry period 2-3 months before harvest. Since the method requires remote sensed data, it could be applied over areas with poor data coverage.2014-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/8258enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:07Zoai:digital.cic.gba.gob.ar:11746/8258Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:07.449CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Spatial crop yield estimation based on remotely sensed stress index
title Spatial crop yield estimation based on remotely sensed stress index
spellingShingle Spatial crop yield estimation based on remotely sensed stress index
Holzman, Mauro
Oceanografía, Hidrología, Recursos Hídricos
stress index
remote sensing
soil moisture
title_short Spatial crop yield estimation based on remotely sensed stress index
title_full Spatial crop yield estimation based on remotely sensed stress index
title_fullStr Spatial crop yield estimation based on remotely sensed stress index
title_full_unstemmed Spatial crop yield estimation based on remotely sensed stress index
title_sort Spatial crop yield estimation based on remotely sensed stress index
dc.creator.none.fl_str_mv Holzman, Mauro
Rivas, Raúl Eduardo
Bayala, Martín Ignacio
Ocampo, Dora
Carmona, Facundo
author Holzman, Mauro
author_facet Holzman, Mauro
Rivas, Raúl Eduardo
Bayala, Martín Ignacio
Ocampo, Dora
Carmona, Facundo
author_role author
author2 Rivas, Raúl Eduardo
Bayala, Martín Ignacio
Ocampo, Dora
Carmona, Facundo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Oceanografía, Hidrología, Recursos Hídricos
stress index
remote sensing
soil moisture
topic Oceanografía, Hidrología, Recursos Hídricos
stress index
remote sensing
soil moisture
dc.description.none.fl_txt_mv The improvement of methods to evaluate the real impact of soil moisture availability on crop systems is crucial because the importance for world economy and food production. The relationship between the remote sensed stress index TVDI, root-zone soil moisture and soybean yield was analyzed in a sandy region of Argentine Pampas. High correlation (R2 =0.68) between TVDI and soybean yield was observed. The obtained adjustment allows us to evaluate the spatial variability of yield during a humid and dry period 2-3 months before harvest. Since the method requires remote sensed data, it could be applied over areas with poor data coverage.
description The improvement of methods to evaluate the real impact of soil moisture availability on crop systems is crucial because the importance for world economy and food production. The relationship between the remote sensed stress index TVDI, root-zone soil moisture and soybean yield was analyzed in a sandy region of Argentine Pampas. High correlation (R2 =0.68) between TVDI and soybean yield was observed. The obtained adjustment allows us to evaluate the spatial variability of yield during a humid and dry period 2-3 months before harvest. Since the method requires remote sensed data, it could be applied over areas with poor data coverage.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/8258
url https://digital.cic.gba.gob.ar/handle/11746/8258
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618601405874176
score 13.070432