Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications
- Autores
- Bagavathiannan, Muthukumar V.; Beckie, Hugh J.; Chantre, Guillermo R.; González Andújar, José L.; León, Ramón G.; Neve, Paul; Poggio, Santiago Luis; Schutte, Brian J.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Bagavathiannan, Muthukumar V. Texas A and M University. Department of Soil and Crop Sciences. College Station. USA.
Fil: Beckie, Hugh J. The University of Western Australia. School of Agriculture and Environment. Western Australia, Australia.
Fil: Chantre, Guillermo R. Universidad Nacional del Sur. Departamento de Agronomía. Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS - CONICET - CONICET). Bahía Blanca, Buenos Aires, Argentina.
Fil: Chantre, Guillermo R. CONICET - Universidad Nacional del Sur. Departamento de Agronomía. Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS - CONICET - CONICET). Bahía Blanca, Buenos Aires, Argentina.
Fil: González Andújar, José L. Instituto de Agricultura Sostenible (CSIC). Cordoba, Spain.
Fil: León, Ramón G. North Carolina State University. Department of Crop and Soil Sciences. Center for Environmental Farming Systems, Genetic Engineering and Society Center. Raleigh, USA.
Fil: Neve, Paul. Agriculture and Horticulture Development Board. Stoneleigh Park, Kenilworth, UK.
Fil: Poggio, Santiago Luis. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal. Buenos Aires, Argentina.
Fil: Schutte, Brian J. New Mexico State University. Department of Entomology, Plant Pathology and Weed Science. Las Cruces, USA.
In weed science and management, models are important and can be used to better understand what has occurred in management scenarios, to predict what will happen and to evaluate the outcomes of control methods. To-date, perspectives on and the understanding of weed models have been disjointed, especially in terms of how they have been applied to advance weed science and management. This paper presents a general overview of the nature and application of a full range of simulation models on the ecology, biology, and management of arable weeds, and how they have been used to provide insights and directions for decision making when long-term weed population trajectories are impractical to be determined using field experimentation. While research on weed biology and ecology has gained momentum over the past four decades, especially for species with high risk for herbicide resistance evolution, knowledge gaps still exist for several life cycle parameters for many agriculturally important weed species. More research efforts should be invested in filling these knowledge gaps, which will lead to better models and ultimately better inform weed management decision making.
grafs. - Fuente
- Agronomy
Vol.10, no.10
art.1611
http://www.mdpi.com/ - Materia
-
WEED SEEDLING EMERGENCE
CROP - WEED COMPETITION
WEED POPULATION DYNAMICS
GENE FLOW
HERBICIDE RESISTANCE
DECISION - SUPPORT TOOLS
PREDICTIVE MODELS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- acceso abierto
- Repositorio
- Institución
- Universidad de Buenos Aires. Facultad de Agronomía
- OAI Identificador
- snrd:2020bagavathiannan
Ver los metadatos del registro completo
id |
FAUBA_a893a4c537be5ffad2ed57abfd1d4e61 |
---|---|
oai_identifier_str |
snrd:2020bagavathiannan |
network_acronym_str |
FAUBA |
repository_id_str |
2729 |
network_name_str |
FAUBA Digital (UBA-FAUBA) |
spelling |
Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applicationsBagavathiannan, Muthukumar V.Beckie, Hugh J.Chantre, Guillermo R.González Andújar, José L.León, Ramón G.Neve, PaulPoggio, Santiago LuisSchutte, Brian J.WEED SEEDLING EMERGENCECROP - WEED COMPETITIONWEED POPULATION DYNAMICSGENE FLOWHERBICIDE RESISTANCEDECISION - SUPPORT TOOLSPREDICTIVE MODELSFil: Bagavathiannan, Muthukumar V. Texas A and M University. Department of Soil and Crop Sciences. College Station. USA.Fil: Beckie, Hugh J. The University of Western Australia. School of Agriculture and Environment. Western Australia, Australia.Fil: Chantre, Guillermo R. Universidad Nacional del Sur. Departamento de Agronomía. Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS - CONICET - CONICET). Bahía Blanca, Buenos Aires, Argentina.Fil: Chantre, Guillermo R. CONICET - Universidad Nacional del Sur. Departamento de Agronomía. Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS - CONICET - CONICET). Bahía Blanca, Buenos Aires, Argentina.Fil: González Andújar, José L. Instituto de Agricultura Sostenible (CSIC). Cordoba, Spain.Fil: León, Ramón G. North Carolina State University. Department of Crop and Soil Sciences. Center for Environmental Farming Systems, Genetic Engineering and Society Center. Raleigh, USA.Fil: Neve, Paul. Agriculture and Horticulture Development Board. Stoneleigh Park, Kenilworth, UK.Fil: Poggio, Santiago Luis. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal. Buenos Aires, Argentina.Fil: Schutte, Brian J. New Mexico State University. Department of Entomology, Plant Pathology and Weed Science. Las Cruces, USA.In weed science and management, models are important and can be used to better understand what has occurred in management scenarios, to predict what will happen and to evaluate the outcomes of control methods. To-date, perspectives on and the understanding of weed models have been disjointed, especially in terms of how they have been applied to advance weed science and management. This paper presents a general overview of the nature and application of a full range of simulation models on the ecology, biology, and management of arable weeds, and how they have been used to provide insights and directions for decision making when long-term weed population trajectories are impractical to be determined using field experimentation. While research on weed biology and ecology has gained momentum over the past four decades, especially for species with high risk for herbicide resistance evolution, knowledge gaps still exist for several life cycle parameters for many agriculturally important weed species. More research efforts should be invested in filling these knowledge gaps, which will lead to better models and ultimately better inform weed management decision making.grafs.2020articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.3390/agronomy10101611issn:2073-4395http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2020bagavathiannanAgronomyVol.10, no.10art.1611http://www.mdpi.com/reponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccess2025-09-29T13:41:53Zsnrd:2020bagavathiannaninstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-29 13:41:54.743FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse |
dc.title.none.fl_str_mv |
Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications |
title |
Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications |
spellingShingle |
Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications Bagavathiannan, Muthukumar V. WEED SEEDLING EMERGENCE CROP - WEED COMPETITION WEED POPULATION DYNAMICS GENE FLOW HERBICIDE RESISTANCE DECISION - SUPPORT TOOLS PREDICTIVE MODELS |
title_short |
Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications |
title_full |
Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications |
title_fullStr |
Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications |
title_full_unstemmed |
Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications |
title_sort |
Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications |
dc.creator.none.fl_str_mv |
Bagavathiannan, Muthukumar V. Beckie, Hugh J. Chantre, Guillermo R. González Andújar, José L. León, Ramón G. Neve, Paul Poggio, Santiago Luis Schutte, Brian J. |
author |
Bagavathiannan, Muthukumar V. |
author_facet |
Bagavathiannan, Muthukumar V. Beckie, Hugh J. Chantre, Guillermo R. González Andújar, José L. León, Ramón G. Neve, Paul Poggio, Santiago Luis Schutte, Brian J. |
author_role |
author |
author2 |
Beckie, Hugh J. Chantre, Guillermo R. González Andújar, José L. León, Ramón G. Neve, Paul Poggio, Santiago Luis Schutte, Brian J. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
WEED SEEDLING EMERGENCE CROP - WEED COMPETITION WEED POPULATION DYNAMICS GENE FLOW HERBICIDE RESISTANCE DECISION - SUPPORT TOOLS PREDICTIVE MODELS |
topic |
WEED SEEDLING EMERGENCE CROP - WEED COMPETITION WEED POPULATION DYNAMICS GENE FLOW HERBICIDE RESISTANCE DECISION - SUPPORT TOOLS PREDICTIVE MODELS |
dc.description.none.fl_txt_mv |
Fil: Bagavathiannan, Muthukumar V. Texas A and M University. Department of Soil and Crop Sciences. College Station. USA. Fil: Beckie, Hugh J. The University of Western Australia. School of Agriculture and Environment. Western Australia, Australia. Fil: Chantre, Guillermo R. Universidad Nacional del Sur. Departamento de Agronomía. Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS - CONICET - CONICET). Bahía Blanca, Buenos Aires, Argentina. Fil: Chantre, Guillermo R. CONICET - Universidad Nacional del Sur. Departamento de Agronomía. Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS - CONICET - CONICET). Bahía Blanca, Buenos Aires, Argentina. Fil: González Andújar, José L. Instituto de Agricultura Sostenible (CSIC). Cordoba, Spain. Fil: León, Ramón G. North Carolina State University. Department of Crop and Soil Sciences. Center for Environmental Farming Systems, Genetic Engineering and Society Center. Raleigh, USA. Fil: Neve, Paul. Agriculture and Horticulture Development Board. Stoneleigh Park, Kenilworth, UK. Fil: Poggio, Santiago Luis. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal. Buenos Aires, Argentina. Fil: Schutte, Brian J. New Mexico State University. Department of Entomology, Plant Pathology and Weed Science. Las Cruces, USA. In weed science and management, models are important and can be used to better understand what has occurred in management scenarios, to predict what will happen and to evaluate the outcomes of control methods. To-date, perspectives on and the understanding of weed models have been disjointed, especially in terms of how they have been applied to advance weed science and management. This paper presents a general overview of the nature and application of a full range of simulation models on the ecology, biology, and management of arable weeds, and how they have been used to provide insights and directions for decision making when long-term weed population trajectories are impractical to be determined using field experimentation. While research on weed biology and ecology has gained momentum over the past four decades, especially for species with high risk for herbicide resistance evolution, knowledge gaps still exist for several life cycle parameters for many agriculturally important weed species. More research efforts should be invested in filling these knowledge gaps, which will lead to better models and ultimately better inform weed management decision making. grafs. |
description |
Fil: Bagavathiannan, Muthukumar V. Texas A and M University. Department of Soil and Crop Sciences. College Station. USA. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
doi:10.3390/agronomy10101611 issn:2073-4395 http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2020bagavathiannan |
identifier_str_mv |
doi:10.3390/agronomy10101611 issn:2073-4395 |
url |
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2020bagavathiannan |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Agronomy Vol.10, no.10 art.1611 http://www.mdpi.com/ reponame:FAUBA Digital (UBA-FAUBA) instname:Universidad de Buenos Aires. Facultad de Agronomía |
reponame_str |
FAUBA Digital (UBA-FAUBA) |
collection |
FAUBA Digital (UBA-FAUBA) |
instname_str |
Universidad de Buenos Aires. Facultad de Agronomía |
repository.name.fl_str_mv |
FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía |
repository.mail.fl_str_mv |
martino@agro.uba.ar;berasa@agro.uba.ar |
_version_ |
1844618863105277952 |
score |
13.069144 |