Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications

Autores
Bagavathiannan, Muthukumar V.; Beckie, Hugh J.; Chantre, Guillermo R.; González Andújar, José L.; León, Ramón G.; Neve, Paul; Poggio, Santiago Luis; Schutte, Brian J.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Bagavathiannan, Muthukumar V. Texas A and M University. Department of Soil and Crop Sciences. College Station. USA.
Fil: Beckie, Hugh J. The University of Western Australia. School of Agriculture and Environment. Western Australia, Australia.
Fil: Chantre, Guillermo R. Universidad Nacional del Sur. Departamento de Agronomía. Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS - CONICET - CONICET). Bahía Blanca, Buenos Aires, Argentina.
Fil: Chantre, Guillermo R. CONICET - Universidad Nacional del Sur. Departamento de Agronomía. Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS - CONICET - CONICET). Bahía Blanca, Buenos Aires, Argentina.
Fil: González Andújar, José L. Instituto de Agricultura Sostenible (CSIC). Cordoba, Spain.
Fil: León, Ramón G. North Carolina State University. Department of Crop and Soil Sciences. Center for Environmental Farming Systems, Genetic Engineering and Society Center. Raleigh, USA.
Fil: Neve, Paul. Agriculture and Horticulture Development Board. Stoneleigh Park, Kenilworth, UK.
Fil: Poggio, Santiago Luis. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal. Buenos Aires, Argentina.
Fil: Schutte, Brian J. New Mexico State University. Department of Entomology, Plant Pathology and Weed Science. Las Cruces, USA.
In weed science and management, models are important and can be used to better understand what has occurred in management scenarios, to predict what will happen and to evaluate the outcomes of control methods. To-date, perspectives on and the understanding of weed models have been disjointed, especially in terms of how they have been applied to advance weed science and management. This paper presents a general overview of the nature and application of a full range of simulation models on the ecology, biology, and management of arable weeds, and how they have been used to provide insights and directions for decision making when long-term weed population trajectories are impractical to be determined using field experimentation. While research on weed biology and ecology has gained momentum over the past four decades, especially for species with high risk for herbicide resistance evolution, knowledge gaps still exist for several life cycle parameters for many agriculturally important weed species. More research efforts should be invested in filling these knowledge gaps, which will lead to better models and ultimately better inform weed management decision making.
grafs.
Fuente
Agronomy
Vol.10, no.10
art.1611
http://www.mdpi.com/
Materia
WEED SEEDLING EMERGENCE
CROP - WEED COMPETITION
WEED POPULATION DYNAMICS
GENE FLOW
HERBICIDE RESISTANCE
DECISION - SUPPORT TOOLS
PREDICTIVE MODELS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
acceso abierto
Repositorio
FAUBA Digital (UBA-FAUBA)
Institución
Universidad de Buenos Aires. Facultad de Agronomía
OAI Identificador
snrd:2020bagavathiannan

id FAUBA_a893a4c537be5ffad2ed57abfd1d4e61
oai_identifier_str snrd:2020bagavathiannan
network_acronym_str FAUBA
repository_id_str 2729
network_name_str FAUBA Digital (UBA-FAUBA)
spelling Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applicationsBagavathiannan, Muthukumar V.Beckie, Hugh J.Chantre, Guillermo R.González Andújar, José L.León, Ramón G.Neve, PaulPoggio, Santiago LuisSchutte, Brian J.WEED SEEDLING EMERGENCECROP - WEED COMPETITIONWEED POPULATION DYNAMICSGENE FLOWHERBICIDE RESISTANCEDECISION - SUPPORT TOOLSPREDICTIVE MODELSFil: Bagavathiannan, Muthukumar V. Texas A and M University. Department of Soil and Crop Sciences. College Station. USA.Fil: Beckie, Hugh J. The University of Western Australia. School of Agriculture and Environment. Western Australia, Australia.Fil: Chantre, Guillermo R. Universidad Nacional del Sur. Departamento de Agronomía. Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS - CONICET - CONICET). Bahía Blanca, Buenos Aires, Argentina.Fil: Chantre, Guillermo R. CONICET - Universidad Nacional del Sur. Departamento de Agronomía. Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS - CONICET - CONICET). Bahía Blanca, Buenos Aires, Argentina.Fil: González Andújar, José L. Instituto de Agricultura Sostenible (CSIC). Cordoba, Spain.Fil: León, Ramón G. North Carolina State University. Department of Crop and Soil Sciences. Center for Environmental Farming Systems, Genetic Engineering and Society Center. Raleigh, USA.Fil: Neve, Paul. Agriculture and Horticulture Development Board. Stoneleigh Park, Kenilworth, UK.Fil: Poggio, Santiago Luis. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal. Buenos Aires, Argentina.Fil: Schutte, Brian J. New Mexico State University. Department of Entomology, Plant Pathology and Weed Science. Las Cruces, USA.In weed science and management, models are important and can be used to better understand what has occurred in management scenarios, to predict what will happen and to evaluate the outcomes of control methods. To-date, perspectives on and the understanding of weed models have been disjointed, especially in terms of how they have been applied to advance weed science and management. This paper presents a general overview of the nature and application of a full range of simulation models on the ecology, biology, and management of arable weeds, and how they have been used to provide insights and directions for decision making when long-term weed population trajectories are impractical to be determined using field experimentation. While research on weed biology and ecology has gained momentum over the past four decades, especially for species with high risk for herbicide resistance evolution, knowledge gaps still exist for several life cycle parameters for many agriculturally important weed species. More research efforts should be invested in filling these knowledge gaps, which will lead to better models and ultimately better inform weed management decision making.grafs.2020articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.3390/agronomy10101611issn:2073-4395http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2020bagavathiannanAgronomyVol.10, no.10art.1611http://www.mdpi.com/reponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccess2025-09-29T13:41:53Zsnrd:2020bagavathiannaninstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-29 13:41:54.743FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse
dc.title.none.fl_str_mv Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications
title Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications
spellingShingle Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications
Bagavathiannan, Muthukumar V.
WEED SEEDLING EMERGENCE
CROP - WEED COMPETITION
WEED POPULATION DYNAMICS
GENE FLOW
HERBICIDE RESISTANCE
DECISION - SUPPORT TOOLS
PREDICTIVE MODELS
title_short Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications
title_full Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications
title_fullStr Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications
title_full_unstemmed Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications
title_sort Simulation models on the ecology and management of arable weeds : structure, quantitative insights, and applications
dc.creator.none.fl_str_mv Bagavathiannan, Muthukumar V.
Beckie, Hugh J.
Chantre, Guillermo R.
González Andújar, José L.
León, Ramón G.
Neve, Paul
Poggio, Santiago Luis
Schutte, Brian J.
author Bagavathiannan, Muthukumar V.
author_facet Bagavathiannan, Muthukumar V.
Beckie, Hugh J.
Chantre, Guillermo R.
González Andújar, José L.
León, Ramón G.
Neve, Paul
Poggio, Santiago Luis
Schutte, Brian J.
author_role author
author2 Beckie, Hugh J.
Chantre, Guillermo R.
González Andújar, José L.
León, Ramón G.
Neve, Paul
Poggio, Santiago Luis
Schutte, Brian J.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv WEED SEEDLING EMERGENCE
CROP - WEED COMPETITION
WEED POPULATION DYNAMICS
GENE FLOW
HERBICIDE RESISTANCE
DECISION - SUPPORT TOOLS
PREDICTIVE MODELS
topic WEED SEEDLING EMERGENCE
CROP - WEED COMPETITION
WEED POPULATION DYNAMICS
GENE FLOW
HERBICIDE RESISTANCE
DECISION - SUPPORT TOOLS
PREDICTIVE MODELS
dc.description.none.fl_txt_mv Fil: Bagavathiannan, Muthukumar V. Texas A and M University. Department of Soil and Crop Sciences. College Station. USA.
Fil: Beckie, Hugh J. The University of Western Australia. School of Agriculture and Environment. Western Australia, Australia.
Fil: Chantre, Guillermo R. Universidad Nacional del Sur. Departamento de Agronomía. Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS - CONICET - CONICET). Bahía Blanca, Buenos Aires, Argentina.
Fil: Chantre, Guillermo R. CONICET - Universidad Nacional del Sur. Departamento de Agronomía. Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS - CONICET - CONICET). Bahía Blanca, Buenos Aires, Argentina.
Fil: González Andújar, José L. Instituto de Agricultura Sostenible (CSIC). Cordoba, Spain.
Fil: León, Ramón G. North Carolina State University. Department of Crop and Soil Sciences. Center for Environmental Farming Systems, Genetic Engineering and Society Center. Raleigh, USA.
Fil: Neve, Paul. Agriculture and Horticulture Development Board. Stoneleigh Park, Kenilworth, UK.
Fil: Poggio, Santiago Luis. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal. Buenos Aires, Argentina.
Fil: Schutte, Brian J. New Mexico State University. Department of Entomology, Plant Pathology and Weed Science. Las Cruces, USA.
In weed science and management, models are important and can be used to better understand what has occurred in management scenarios, to predict what will happen and to evaluate the outcomes of control methods. To-date, perspectives on and the understanding of weed models have been disjointed, especially in terms of how they have been applied to advance weed science and management. This paper presents a general overview of the nature and application of a full range of simulation models on the ecology, biology, and management of arable weeds, and how they have been used to provide insights and directions for decision making when long-term weed population trajectories are impractical to be determined using field experimentation. While research on weed biology and ecology has gained momentum over the past four decades, especially for species with high risk for herbicide resistance evolution, knowledge gaps still exist for several life cycle parameters for many agriculturally important weed species. More research efforts should be invested in filling these knowledge gaps, which will lead to better models and ultimately better inform weed management decision making.
grafs.
description Fil: Bagavathiannan, Muthukumar V. Texas A and M University. Department of Soil and Crop Sciences. College Station. USA.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv doi:10.3390/agronomy10101611
issn:2073-4395
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2020bagavathiannan
identifier_str_mv doi:10.3390/agronomy10101611
issn:2073-4395
url http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2020bagavathiannan
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Agronomy
Vol.10, no.10
art.1611
http://www.mdpi.com/
reponame:FAUBA Digital (UBA-FAUBA)
instname:Universidad de Buenos Aires. Facultad de Agronomía
reponame_str FAUBA Digital (UBA-FAUBA)
collection FAUBA Digital (UBA-FAUBA)
instname_str Universidad de Buenos Aires. Facultad de Agronomía
repository.name.fl_str_mv FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía
repository.mail.fl_str_mv martino@agro.uba.ar;berasa@agro.uba.ar
_version_ 1844618863105277952
score 13.069144