Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications
- Autores
- Bagavathiannan, Muthukumar V.; Beckie, Hugh J.; Chantre Balacca, Guillermo Ruben; González Andujar, José L.; Leon, Ramon G.; Neve, Paul; Poggio, Santiago Luis; Schutte, Brian J.; Somerville, Gayle J.; Werle, Rodrigo; Acker, Rene Van
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In weed science and management, models are important and can be used to better understand what has occurred in management scenarios, to predict what will happen and to evaluate the outcomes of control methods. To-date, perspectives on and the understanding of weed models have been disjointed, especially in terms of how they have been applied to advance weed science and management. This paper presents a general overview of the nature and application of a full range of simulation models on the ecology, biology, and management of arable weeds, and how they have been used to provide insights and directions for decision making when long-term weed population trajectories are impractical to be determined using field experimentation. While research on weed biology and ecology has gained momentum over the past four decades, especially for species with high risk for herbicide resistance evolution, knowledge gaps still exist for several life cycle parameters for many agriculturally important weed species. More research efforts should be invested in filling these knowledge gaps, which will lead to better models and ultimately better inform weed management decision making.
Fil: Bagavathiannan, Muthukumar V.. Texas A&M University; Estados Unidos
Fil: Beckie, Hugh J.. University of Western Australia; Australia
Fil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Fil: González Andujar, José L.. Consejo Superior de Investigaciones Científicas; España
Fil: Leon, Ramon G.. North Carolina State University; Estados Unidos
Fil: Neve, Paul. Agriculture & Horticulture Development Board; Reino Unido
Fil: Poggio, Santiago Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Schutte, Brian J.. New Mexico State University.; Estados Unidos
Fil: Somerville, Gayle J.. Sustainable Agriculture Sciences; Reino Unido
Fil: Werle, Rodrigo. University of Wisconsin; Estados Unidos
Fil: Acker, Rene Van. University of Guelph; Canadá - Materia
-
CROP-WEED COMPETITION
DECISION-SUPPORT TOOLS
GENE FLOW
HERBICIDE RESISTANCE
PREDICTIVE MODELS
WEED POPULATION DYNAMICS
WEED SEEDLING EMERGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/121468
Ver los metadatos del registro completo
id |
CONICETDig_8723bd09fe63a25201c6560d0ee7870f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/121468 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applicationsBagavathiannan, Muthukumar V.Beckie, Hugh J.Chantre Balacca, Guillermo RubenGonzález Andujar, José L.Leon, Ramon G.Neve, PaulPoggio, Santiago LuisSchutte, Brian J.Somerville, Gayle J.Werle, RodrigoAcker, Rene VanCROP-WEED COMPETITIONDECISION-SUPPORT TOOLSGENE FLOWHERBICIDE RESISTANCEPREDICTIVE MODELSWEED POPULATION DYNAMICSWEED SEEDLING EMERGENCEhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4https://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4In weed science and management, models are important and can be used to better understand what has occurred in management scenarios, to predict what will happen and to evaluate the outcomes of control methods. To-date, perspectives on and the understanding of weed models have been disjointed, especially in terms of how they have been applied to advance weed science and management. This paper presents a general overview of the nature and application of a full range of simulation models on the ecology, biology, and management of arable weeds, and how they have been used to provide insights and directions for decision making when long-term weed population trajectories are impractical to be determined using field experimentation. While research on weed biology and ecology has gained momentum over the past four decades, especially for species with high risk for herbicide resistance evolution, knowledge gaps still exist for several life cycle parameters for many agriculturally important weed species. More research efforts should be invested in filling these knowledge gaps, which will lead to better models and ultimately better inform weed management decision making.Fil: Bagavathiannan, Muthukumar V.. Texas A&M University; Estados UnidosFil: Beckie, Hugh J.. University of Western Australia; AustraliaFil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: González Andujar, José L.. Consejo Superior de Investigaciones Científicas; EspañaFil: Leon, Ramon G.. North Carolina State University; Estados UnidosFil: Neve, Paul. Agriculture & Horticulture Development Board; Reino UnidoFil: Poggio, Santiago Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Schutte, Brian J.. New Mexico State University.; Estados UnidosFil: Somerville, Gayle J.. Sustainable Agriculture Sciences; Reino UnidoFil: Werle, Rodrigo. University of Wisconsin; Estados UnidosFil: Acker, Rene Van. University of Guelph; CanadáMDPI AG2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121468Bagavathiannan, Muthukumar V.; Beckie, Hugh J.; Chantre Balacca, Guillermo Ruben; González Andujar, José L.; Leon, Ramon G.; et al.; Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications; MDPI AG; Agronomy; 10; 10; 10-2020; 1-24;16112073-4395CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4395/10/10/1611info:eu-repo/semantics/altIdentifier/doi/10.3390/agronomy10101611info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:43Zoai:ri.conicet.gov.ar:11336/121468instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:43.334CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications |
title |
Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications |
spellingShingle |
Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications Bagavathiannan, Muthukumar V. CROP-WEED COMPETITION DECISION-SUPPORT TOOLS GENE FLOW HERBICIDE RESISTANCE PREDICTIVE MODELS WEED POPULATION DYNAMICS WEED SEEDLING EMERGENCE |
title_short |
Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications |
title_full |
Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications |
title_fullStr |
Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications |
title_full_unstemmed |
Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications |
title_sort |
Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications |
dc.creator.none.fl_str_mv |
Bagavathiannan, Muthukumar V. Beckie, Hugh J. Chantre Balacca, Guillermo Ruben González Andujar, José L. Leon, Ramon G. Neve, Paul Poggio, Santiago Luis Schutte, Brian J. Somerville, Gayle J. Werle, Rodrigo Acker, Rene Van |
author |
Bagavathiannan, Muthukumar V. |
author_facet |
Bagavathiannan, Muthukumar V. Beckie, Hugh J. Chantre Balacca, Guillermo Ruben González Andujar, José L. Leon, Ramon G. Neve, Paul Poggio, Santiago Luis Schutte, Brian J. Somerville, Gayle J. Werle, Rodrigo Acker, Rene Van |
author_role |
author |
author2 |
Beckie, Hugh J. Chantre Balacca, Guillermo Ruben González Andujar, José L. Leon, Ramon G. Neve, Paul Poggio, Santiago Luis Schutte, Brian J. Somerville, Gayle J. Werle, Rodrigo Acker, Rene Van |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
CROP-WEED COMPETITION DECISION-SUPPORT TOOLS GENE FLOW HERBICIDE RESISTANCE PREDICTIVE MODELS WEED POPULATION DYNAMICS WEED SEEDLING EMERGENCE |
topic |
CROP-WEED COMPETITION DECISION-SUPPORT TOOLS GENE FLOW HERBICIDE RESISTANCE PREDICTIVE MODELS WEED POPULATION DYNAMICS WEED SEEDLING EMERGENCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 https://purl.org/becyt/ford/4.5 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
In weed science and management, models are important and can be used to better understand what has occurred in management scenarios, to predict what will happen and to evaluate the outcomes of control methods. To-date, perspectives on and the understanding of weed models have been disjointed, especially in terms of how they have been applied to advance weed science and management. This paper presents a general overview of the nature and application of a full range of simulation models on the ecology, biology, and management of arable weeds, and how they have been used to provide insights and directions for decision making when long-term weed population trajectories are impractical to be determined using field experimentation. While research on weed biology and ecology has gained momentum over the past four decades, especially for species with high risk for herbicide resistance evolution, knowledge gaps still exist for several life cycle parameters for many agriculturally important weed species. More research efforts should be invested in filling these knowledge gaps, which will lead to better models and ultimately better inform weed management decision making. Fil: Bagavathiannan, Muthukumar V.. Texas A&M University; Estados Unidos Fil: Beckie, Hugh J.. University of Western Australia; Australia Fil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina Fil: González Andujar, José L.. Consejo Superior de Investigaciones Científicas; España Fil: Leon, Ramon G.. North Carolina State University; Estados Unidos Fil: Neve, Paul. Agriculture & Horticulture Development Board; Reino Unido Fil: Poggio, Santiago Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Schutte, Brian J.. New Mexico State University.; Estados Unidos Fil: Somerville, Gayle J.. Sustainable Agriculture Sciences; Reino Unido Fil: Werle, Rodrigo. University of Wisconsin; Estados Unidos Fil: Acker, Rene Van. University of Guelph; Canadá |
description |
In weed science and management, models are important and can be used to better understand what has occurred in management scenarios, to predict what will happen and to evaluate the outcomes of control methods. To-date, perspectives on and the understanding of weed models have been disjointed, especially in terms of how they have been applied to advance weed science and management. This paper presents a general overview of the nature and application of a full range of simulation models on the ecology, biology, and management of arable weeds, and how they have been used to provide insights and directions for decision making when long-term weed population trajectories are impractical to be determined using field experimentation. While research on weed biology and ecology has gained momentum over the past four decades, especially for species with high risk for herbicide resistance evolution, knowledge gaps still exist for several life cycle parameters for many agriculturally important weed species. More research efforts should be invested in filling these knowledge gaps, which will lead to better models and ultimately better inform weed management decision making. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/121468 Bagavathiannan, Muthukumar V.; Beckie, Hugh J.; Chantre Balacca, Guillermo Ruben; González Andujar, José L.; Leon, Ramon G.; et al.; Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications; MDPI AG; Agronomy; 10; 10; 10-2020; 1-24;1611 2073-4395 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/121468 |
identifier_str_mv |
Bagavathiannan, Muthukumar V.; Beckie, Hugh J.; Chantre Balacca, Guillermo Ruben; González Andujar, José L.; Leon, Ramon G.; et al.; Simulation models on the ecology and management of arableweeds: Structure, quantitative insights, and applications; MDPI AG; Agronomy; 10; 10; 10-2020; 1-24;1611 2073-4395 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4395/10/10/1611 info:eu-repo/semantics/altIdentifier/doi/10.3390/agronomy10101611 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614352696508416 |
score |
13.069144 |