Separating homeologs by phasing in the tetraploid wheat transcriptome

Autores
Krasileva, Ksenia V.; Buffalo, Vince; Bailey, Paul; Pearce, Stephen; Ayling, Sarah; Tabbita, Facundo; Soria, Marcelo Abel; Wang, Shichen; Akhunov, Eduard; Uauy, Cristobal; Dubcovsky, Jorge
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Krasileva, Ksenia V. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
Fil: Buffalo, Vince. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
Fil: Bailey, Paul. The Genome Analysis Centre. Norwich Research Park. Norwich NR4 7UH, UK.
Fil: Pearce, Stephen. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
Fil: Ayling, Sarah. The Genome Analysis Centre. Norwich Research Park. Norwich NR4 7UH, UK.
Fil: Tabbita, Facundo. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
Fil: Soria, Marcelo Abel. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
Fil: Soria, Marcelo Abel. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Biología Aplicada y Alimentos. Cátedra de Microbiología Agrícola. Buenos Aires, Argentina.
Fil: Soria, Marcelo Abel. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.
Fil: Soria, Marcelo Abel. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.
Fil: Wang, Shichen. Kansas State University. Department of Plant Pathology. Manhattan, KS 66506, USA.
Fil: Akhunov, Eduard. Kansas State University. Department of Plant Pathology. Manhattan, KS 66506, USA.
Fil: Uauy, Cristobal. John Innes Centre. Norwich Research Park. Norwich NR4 7UH, UK.
Fil: Dubcovsky, Jorge. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
Fil: Dubcovsky, Jorge. Howard Hughes Medical Institute. Chevy Chase, MD 20815, USA.
Background: The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. Results: A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96 percent of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22 percent relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7 percent of SNPs analyzed are correctly separated by phasing. Conclusions: Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies.
Fuente
Genome Biology
Vol.14, no.6
14:R66
http://genomebiology.com/
Materia
GENE PREDICTION
PHASING
POLYPLOID
PSEUDOGENES
TRANSCRIPTOME ASSEMBLY
TRITICUM TURGIDUM
TRITICUM URARTU
WHEAT
CONTIG
PROTEOME
TRANSCRIPTOME
CONTROLLED STUDY
DIPLOIDY
GENE SEQUENCE
GENOME
GENOMICS
HETEROZYGOTE
HOMEOLOG
NONHUMAN
OPEN READING FRAME
PLANT GENOME
SINGLE NUCLEOTIDE POLYMORPHISM
TETRAPLOIDY
TRITICUM AESTIVUM
MULTIPLE K-MER ASSEMBLY
PHASING
COMPLEMENTARY DNA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
acceso abierto
Repositorio
FAUBA Digital (UBA-FAUBA)
Institución
Universidad de Buenos Aires. Facultad de Agronomía
OAI Identificador
snrd:2013krasileva

id FAUBA_035c0c3ce42cd2e0bcd4cbd07b2da447
oai_identifier_str snrd:2013krasileva
network_acronym_str FAUBA
repository_id_str 2729
network_name_str FAUBA Digital (UBA-FAUBA)
spelling Separating homeologs by phasing in the tetraploid wheat transcriptomeKrasileva, Ksenia V.Buffalo, VinceBailey, PaulPearce, StephenAyling, SarahTabbita, FacundoSoria, Marcelo AbelWang, ShichenAkhunov, EduardUauy, CristobalDubcovsky, JorgeGENE PREDICTIONPHASINGPOLYPLOIDPSEUDOGENESTRANSCRIPTOME ASSEMBLYTRITICUM TURGIDUMTRITICUM URARTUWHEATCONTIGPROTEOMETRANSCRIPTOMECONTROLLED STUDYDIPLOIDYGENE SEQUENCEGENOMEGENOMICSHETEROZYGOTEHOMEOLOGNONHUMANOPEN READING FRAMEPLANT GENOMESINGLE NUCLEOTIDE POLYMORPHISMTETRAPLOIDYTRITICUM AESTIVUMMULTIPLE K-MER ASSEMBLYPHASINGCOMPLEMENTARY DNAFil: Krasileva, Ksenia V. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.Fil: Buffalo, Vince. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.Fil: Bailey, Paul. The Genome Analysis Centre. Norwich Research Park. Norwich NR4 7UH, UK.Fil: Pearce, Stephen. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.Fil: Ayling, Sarah. The Genome Analysis Centre. Norwich Research Park. Norwich NR4 7UH, UK.Fil: Tabbita, Facundo. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.Fil: Soria, Marcelo Abel. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.Fil: Soria, Marcelo Abel. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Biología Aplicada y Alimentos. Cátedra de Microbiología Agrícola. Buenos Aires, Argentina.Fil: Soria, Marcelo Abel. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.Fil: Soria, Marcelo Abel. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.Fil: Wang, Shichen. Kansas State University. Department of Plant Pathology. Manhattan, KS 66506, USA.Fil: Akhunov, Eduard. Kansas State University. Department of Plant Pathology. Manhattan, KS 66506, USA.Fil: Uauy, Cristobal. John Innes Centre. Norwich Research Park. Norwich NR4 7UH, UK.Fil: Dubcovsky, Jorge. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.Fil: Dubcovsky, Jorge. Howard Hughes Medical Institute. Chevy Chase, MD 20815, USA.Background: The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. Results: A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96 percent of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22 percent relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7 percent of SNPs analyzed are correctly separated by phasing. Conclusions: Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies.2013info:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.1186/gb-2013-14-6-r66issn:1474-760Xhttp://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2013krasilevaGenome BiologyVol.14, no.614:R66http://genomebiology.com/reponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccesshttp://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section42025-09-29T13:41:16Zsnrd:2013krasilevainstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-29 13:41:17.362FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse
dc.title.none.fl_str_mv Separating homeologs by phasing in the tetraploid wheat transcriptome
title Separating homeologs by phasing in the tetraploid wheat transcriptome
spellingShingle Separating homeologs by phasing in the tetraploid wheat transcriptome
Krasileva, Ksenia V.
GENE PREDICTION
PHASING
POLYPLOID
PSEUDOGENES
TRANSCRIPTOME ASSEMBLY
TRITICUM TURGIDUM
TRITICUM URARTU
WHEAT
CONTIG
PROTEOME
TRANSCRIPTOME
CONTROLLED STUDY
DIPLOIDY
GENE SEQUENCE
GENOME
GENOMICS
HETEROZYGOTE
HOMEOLOG
NONHUMAN
OPEN READING FRAME
PLANT GENOME
SINGLE NUCLEOTIDE POLYMORPHISM
TETRAPLOIDY
TRITICUM AESTIVUM
MULTIPLE K-MER ASSEMBLY
PHASING
COMPLEMENTARY DNA
title_short Separating homeologs by phasing in the tetraploid wheat transcriptome
title_full Separating homeologs by phasing in the tetraploid wheat transcriptome
title_fullStr Separating homeologs by phasing in the tetraploid wheat transcriptome
title_full_unstemmed Separating homeologs by phasing in the tetraploid wheat transcriptome
title_sort Separating homeologs by phasing in the tetraploid wheat transcriptome
dc.creator.none.fl_str_mv Krasileva, Ksenia V.
Buffalo, Vince
Bailey, Paul
Pearce, Stephen
Ayling, Sarah
Tabbita, Facundo
Soria, Marcelo Abel
Wang, Shichen
Akhunov, Eduard
Uauy, Cristobal
Dubcovsky, Jorge
author Krasileva, Ksenia V.
author_facet Krasileva, Ksenia V.
Buffalo, Vince
Bailey, Paul
Pearce, Stephen
Ayling, Sarah
Tabbita, Facundo
Soria, Marcelo Abel
Wang, Shichen
Akhunov, Eduard
Uauy, Cristobal
Dubcovsky, Jorge
author_role author
author2 Buffalo, Vince
Bailey, Paul
Pearce, Stephen
Ayling, Sarah
Tabbita, Facundo
Soria, Marcelo Abel
Wang, Shichen
Akhunov, Eduard
Uauy, Cristobal
Dubcovsky, Jorge
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv GENE PREDICTION
PHASING
POLYPLOID
PSEUDOGENES
TRANSCRIPTOME ASSEMBLY
TRITICUM TURGIDUM
TRITICUM URARTU
WHEAT
CONTIG
PROTEOME
TRANSCRIPTOME
CONTROLLED STUDY
DIPLOIDY
GENE SEQUENCE
GENOME
GENOMICS
HETEROZYGOTE
HOMEOLOG
NONHUMAN
OPEN READING FRAME
PLANT GENOME
SINGLE NUCLEOTIDE POLYMORPHISM
TETRAPLOIDY
TRITICUM AESTIVUM
MULTIPLE K-MER ASSEMBLY
PHASING
COMPLEMENTARY DNA
topic GENE PREDICTION
PHASING
POLYPLOID
PSEUDOGENES
TRANSCRIPTOME ASSEMBLY
TRITICUM TURGIDUM
TRITICUM URARTU
WHEAT
CONTIG
PROTEOME
TRANSCRIPTOME
CONTROLLED STUDY
DIPLOIDY
GENE SEQUENCE
GENOME
GENOMICS
HETEROZYGOTE
HOMEOLOG
NONHUMAN
OPEN READING FRAME
PLANT GENOME
SINGLE NUCLEOTIDE POLYMORPHISM
TETRAPLOIDY
TRITICUM AESTIVUM
MULTIPLE K-MER ASSEMBLY
PHASING
COMPLEMENTARY DNA
dc.description.none.fl_txt_mv Fil: Krasileva, Ksenia V. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
Fil: Buffalo, Vince. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
Fil: Bailey, Paul. The Genome Analysis Centre. Norwich Research Park. Norwich NR4 7UH, UK.
Fil: Pearce, Stephen. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
Fil: Ayling, Sarah. The Genome Analysis Centre. Norwich Research Park. Norwich NR4 7UH, UK.
Fil: Tabbita, Facundo. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
Fil: Soria, Marcelo Abel. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
Fil: Soria, Marcelo Abel. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Biología Aplicada y Alimentos. Cátedra de Microbiología Agrícola. Buenos Aires, Argentina.
Fil: Soria, Marcelo Abel. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.
Fil: Soria, Marcelo Abel. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.
Fil: Wang, Shichen. Kansas State University. Department of Plant Pathology. Manhattan, KS 66506, USA.
Fil: Akhunov, Eduard. Kansas State University. Department of Plant Pathology. Manhattan, KS 66506, USA.
Fil: Uauy, Cristobal. John Innes Centre. Norwich Research Park. Norwich NR4 7UH, UK.
Fil: Dubcovsky, Jorge. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
Fil: Dubcovsky, Jorge. Howard Hughes Medical Institute. Chevy Chase, MD 20815, USA.
Background: The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. Results: A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96 percent of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22 percent relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7 percent of SNPs analyzed are correctly separated by phasing. Conclusions: Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies.
description Fil: Krasileva, Ksenia V. University of California. Dept. Plant Sciences. Davis, CA 9561, USA.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv doi:10.1186/gb-2013-14-6-r66
issn:1474-760X
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2013krasileva
identifier_str_mv doi:10.1186/gb-2013-14-6-r66
issn:1474-760X
url http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2013krasileva
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
eu_rights_str_mv openAccess
rights_invalid_str_mv openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Genome Biology
Vol.14, no.6
14:R66
http://genomebiology.com/
reponame:FAUBA Digital (UBA-FAUBA)
instname:Universidad de Buenos Aires. Facultad de Agronomía
reponame_str FAUBA Digital (UBA-FAUBA)
collection FAUBA Digital (UBA-FAUBA)
instname_str Universidad de Buenos Aires. Facultad de Agronomía
repository.name.fl_str_mv FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía
repository.mail.fl_str_mv martino@agro.uba.ar;berasa@agro.uba.ar
_version_ 1844618854471303168
score 13.070432