De novo assembly of separate haplotypes solves the high-heterozygosity inconvenience of grapevine genomes
- Autores
- Calderon, Luciano; Carbonell-Bejerano, Pablo; Mauri, Nuria; Muñoz, Claudio; Bree, Laura; Sola, Cristóbal; Bergamin, Daniel; Gomez Talquenca, Gonzalo; Ibañez, Javier; Martinez Zapater, José Miguel; Weigel, D.; Lijavetzky, Diego
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Poster. Publicado en: BAG Journal of Basic and Applied Genetics, 32 (1 suppl), 2021
Most grapevine cultivars originated from the outcrossing of two genetically diverse parents, and are clonally propagated to preserve phenotypes of productive interest. Hence, cultivars are first filial generations (F1) with highly heterozygous diploid genomes, that turn challenging to assemble. ‘Malbec’ is the main cultivar for the Argentine wine industry and it originated in France, from the outcrossing of ‘Magdeleine Noir des Charentes’ and ‘Prunelard’ cultivars. Based on that mother-father-offspring relationship, here we followed the algorithm implemented in the software CanuTrio to produce a phased assembly of ‘Malbec’ genome. For this aim, parental cultivars’ Illumina short-reads were used to sort ‘Malbec’ PacBio long-reads into its haploid complements, to be assembled separately. Postassembly, bioinformatic procedures were employed to reduce the number of duplicated regions and perform sequence error corrections (using ‘Malbec’ Illumina short-reads). We obtained two highly complete and contiguous haploid assemblies for ‘Malbec’, Haplotype-Prunelard (482.4 Mb size; contig N50=7.7 Mb) and Haplotype-Magdeleine (479.4 Mb size; contig N50=6.6 Mb), with 96.1 and 95.8% of BUSCO genes, respectively. We tested for the composition of both haplophases with the tool Merqury, and observed <0.13% of haplotype switches, meaning that ‘Malbec’ genomic information was correctly assigned to each haploid assembly. Finally, a variant calling analysis indicated a great diversity between ‘Malbec’ haplophases, with >15% of both assemblies affected by structural variations, along with 3.2 million SNPs and 0.6 million InDels. Our results indicate that this is a valid approach to assemble highly heterozygous and complex diploid genomes in a completely-phased way.
EEA Mendoza
Fil: Calderón, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
Fil: Carbonell-Bejerano, P. Max Planck Institute for Developmental Biology; Alemania
Fil: Mauri, Nuria. Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja). Finca La Grajera; España
Fil: Muñoz, C. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; Argentina
Fil: Bree, Laura. Vivero Mercier; Argentina
Fil: Sola, Cristóbal. Vivero Mercier; Argentina
Fil: Bergamin, Daniel. Vivero Mercier; Argentina
Fil: Gomez Talquenca, Gonzalo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina
Fil: Martínez Zapater, José Miguel. Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja). Finca La Grajera; España
Fil: Weigel, D. Max Planck Institute for Developmental Biology; Alemania
Fil: Lijavetzky, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina - Fuente
- XVIII Congreso Latinoamericano de Genética, LIV Reunión Anual de la Sociedad de Genética de Chile, XLIX Congreso Argentino de Genética, VIII Congreso de la Sociedad Uruguaya de Genética, I Congreso Paraguayo de Genética, V Congreso Latinoamericano de Genética Humana. Valdivia, Chile, 5-8 octubre 2021 (modalidad virtual)
- Materia
-
Vid
Haplotipos
Heterocigotos
Genomas
Diploidia
Fitomejoramiento
Grapevines
Haplotypes
Heterozygotes
Genomes
Diploidy
Plant Breeding
Malbec - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/11075
Ver los metadatos del registro completo
id |
INTADig_85a529ecd9a0d802353714822fe45f99 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/11075 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
De novo assembly of separate haplotypes solves the high-heterozygosity inconvenience of grapevine genomesA completely-phased diploid genome assembly for ‘Malbec’ cultivar (Vitis vinifera L.)Calderon, LucianoCarbonell-Bejerano, PabloMauri, NuriaMuñoz, ClaudioBree, LauraSola, CristóbalBergamin, DanielGomez Talquenca, GonzaloIbañez, JavierMartinez Zapater, José MiguelWeigel, D.Lijavetzky, DiegoVidHaplotiposHeterocigotosGenomasDiploidiaFitomejoramientoGrapevinesHaplotypesHeterozygotesGenomesDiploidyPlant BreedingMalbecPoster. Publicado en: BAG Journal of Basic and Applied Genetics, 32 (1 suppl), 2021Most grapevine cultivars originated from the outcrossing of two genetically diverse parents, and are clonally propagated to preserve phenotypes of productive interest. Hence, cultivars are first filial generations (F1) with highly heterozygous diploid genomes, that turn challenging to assemble. ‘Malbec’ is the main cultivar for the Argentine wine industry and it originated in France, from the outcrossing of ‘Magdeleine Noir des Charentes’ and ‘Prunelard’ cultivars. Based on that mother-father-offspring relationship, here we followed the algorithm implemented in the software CanuTrio to produce a phased assembly of ‘Malbec’ genome. For this aim, parental cultivars’ Illumina short-reads were used to sort ‘Malbec’ PacBio long-reads into its haploid complements, to be assembled separately. Postassembly, bioinformatic procedures were employed to reduce the number of duplicated regions and perform sequence error corrections (using ‘Malbec’ Illumina short-reads). We obtained two highly complete and contiguous haploid assemblies for ‘Malbec’, Haplotype-Prunelard (482.4 Mb size; contig N50=7.7 Mb) and Haplotype-Magdeleine (479.4 Mb size; contig N50=6.6 Mb), with 96.1 and 95.8% of BUSCO genes, respectively. We tested for the composition of both haplophases with the tool Merqury, and observed <0.13% of haplotype switches, meaning that ‘Malbec’ genomic information was correctly assigned to each haploid assembly. Finally, a variant calling analysis indicated a great diversity between ‘Malbec’ haplophases, with >15% of both assemblies affected by structural variations, along with 3.2 million SNPs and 0.6 million InDels. Our results indicate that this is a valid approach to assemble highly heterozygous and complex diploid genomes in a completely-phased way.EEA MendozaFil: Calderón, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Carbonell-Bejerano, P. Max Planck Institute for Developmental Biology; AlemaniaFil: Mauri, Nuria. Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja). Finca La Grajera; EspañaFil: Muñoz, C. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; ArgentinaFil: Bree, Laura. Vivero Mercier; ArgentinaFil: Sola, Cristóbal. Vivero Mercier; ArgentinaFil: Bergamin, Daniel. Vivero Mercier; ArgentinaFil: Gomez Talquenca, Gonzalo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Martínez Zapater, José Miguel. Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja). Finca La Grajera; EspañaFil: Weigel, D. Max Planck Institute for Developmental Biology; AlemaniaFil: Lijavetzky, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaAsociación Latinoamericana de Genetica (ALAG)2022-01-07T11:36:45Z2022-01-07T11:36:45Z2022-01-07info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/20.500.12123/110751852-6322XVIII Congreso Latinoamericano de Genética, LIV Reunión Anual de la Sociedad de Genética de Chile, XLIX Congreso Argentino de Genética, VIII Congreso de la Sociedad Uruguaya de Genética, I Congreso Paraguayo de Genética, V Congreso Latinoamericano de Genética Humana. Valdivia, Chile, 5-8 octubre 2021 (modalidad virtual)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:30:21Zoai:localhost:20.500.12123/11075instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:30:22.235INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
De novo assembly of separate haplotypes solves the high-heterozygosity inconvenience of grapevine genomes A completely-phased diploid genome assembly for ‘Malbec’ cultivar (Vitis vinifera L.) |
title |
De novo assembly of separate haplotypes solves the high-heterozygosity inconvenience of grapevine genomes |
spellingShingle |
De novo assembly of separate haplotypes solves the high-heterozygosity inconvenience of grapevine genomes Calderon, Luciano Vid Haplotipos Heterocigotos Genomas Diploidia Fitomejoramiento Grapevines Haplotypes Heterozygotes Genomes Diploidy Plant Breeding Malbec |
title_short |
De novo assembly of separate haplotypes solves the high-heterozygosity inconvenience of grapevine genomes |
title_full |
De novo assembly of separate haplotypes solves the high-heterozygosity inconvenience of grapevine genomes |
title_fullStr |
De novo assembly of separate haplotypes solves the high-heterozygosity inconvenience of grapevine genomes |
title_full_unstemmed |
De novo assembly of separate haplotypes solves the high-heterozygosity inconvenience of grapevine genomes |
title_sort |
De novo assembly of separate haplotypes solves the high-heterozygosity inconvenience of grapevine genomes |
dc.creator.none.fl_str_mv |
Calderon, Luciano Carbonell-Bejerano, Pablo Mauri, Nuria Muñoz, Claudio Bree, Laura Sola, Cristóbal Bergamin, Daniel Gomez Talquenca, Gonzalo Ibañez, Javier Martinez Zapater, José Miguel Weigel, D. Lijavetzky, Diego |
author |
Calderon, Luciano |
author_facet |
Calderon, Luciano Carbonell-Bejerano, Pablo Mauri, Nuria Muñoz, Claudio Bree, Laura Sola, Cristóbal Bergamin, Daniel Gomez Talquenca, Gonzalo Ibañez, Javier Martinez Zapater, José Miguel Weigel, D. Lijavetzky, Diego |
author_role |
author |
author2 |
Carbonell-Bejerano, Pablo Mauri, Nuria Muñoz, Claudio Bree, Laura Sola, Cristóbal Bergamin, Daniel Gomez Talquenca, Gonzalo Ibañez, Javier Martinez Zapater, José Miguel Weigel, D. Lijavetzky, Diego |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Vid Haplotipos Heterocigotos Genomas Diploidia Fitomejoramiento Grapevines Haplotypes Heterozygotes Genomes Diploidy Plant Breeding Malbec |
topic |
Vid Haplotipos Heterocigotos Genomas Diploidia Fitomejoramiento Grapevines Haplotypes Heterozygotes Genomes Diploidy Plant Breeding Malbec |
dc.description.none.fl_txt_mv |
Poster. Publicado en: BAG Journal of Basic and Applied Genetics, 32 (1 suppl), 2021 Most grapevine cultivars originated from the outcrossing of two genetically diverse parents, and are clonally propagated to preserve phenotypes of productive interest. Hence, cultivars are first filial generations (F1) with highly heterozygous diploid genomes, that turn challenging to assemble. ‘Malbec’ is the main cultivar for the Argentine wine industry and it originated in France, from the outcrossing of ‘Magdeleine Noir des Charentes’ and ‘Prunelard’ cultivars. Based on that mother-father-offspring relationship, here we followed the algorithm implemented in the software CanuTrio to produce a phased assembly of ‘Malbec’ genome. For this aim, parental cultivars’ Illumina short-reads were used to sort ‘Malbec’ PacBio long-reads into its haploid complements, to be assembled separately. Postassembly, bioinformatic procedures were employed to reduce the number of duplicated regions and perform sequence error corrections (using ‘Malbec’ Illumina short-reads). We obtained two highly complete and contiguous haploid assemblies for ‘Malbec’, Haplotype-Prunelard (482.4 Mb size; contig N50=7.7 Mb) and Haplotype-Magdeleine (479.4 Mb size; contig N50=6.6 Mb), with 96.1 and 95.8% of BUSCO genes, respectively. We tested for the composition of both haplophases with the tool Merqury, and observed <0.13% of haplotype switches, meaning that ‘Malbec’ genomic information was correctly assigned to each haploid assembly. Finally, a variant calling analysis indicated a great diversity between ‘Malbec’ haplophases, with >15% of both assemblies affected by structural variations, along with 3.2 million SNPs and 0.6 million InDels. Our results indicate that this is a valid approach to assemble highly heterozygous and complex diploid genomes in a completely-phased way. EEA Mendoza Fil: Calderón, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina Fil: Carbonell-Bejerano, P. Max Planck Institute for Developmental Biology; Alemania Fil: Mauri, Nuria. Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja). Finca La Grajera; España Fil: Muñoz, C. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; Argentina Fil: Bree, Laura. Vivero Mercier; Argentina Fil: Sola, Cristóbal. Vivero Mercier; Argentina Fil: Bergamin, Daniel. Vivero Mercier; Argentina Fil: Gomez Talquenca, Gonzalo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina Fil: Martínez Zapater, José Miguel. Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja). Finca La Grajera; España Fil: Weigel, D. Max Planck Institute for Developmental Biology; Alemania Fil: Lijavetzky, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina |
description |
Poster. Publicado en: BAG Journal of Basic and Applied Genetics, 32 (1 suppl), 2021 |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-07T11:36:45Z 2022-01-07T11:36:45Z 2022-01-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/11075 1852-6322 |
url |
http://hdl.handle.net/20.500.12123/11075 |
identifier_str_mv |
1852-6322 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Latinoamericana de Genetica (ALAG) |
publisher.none.fl_str_mv |
Asociación Latinoamericana de Genetica (ALAG) |
dc.source.none.fl_str_mv |
XVIII Congreso Latinoamericano de Genética, LIV Reunión Anual de la Sociedad de Genética de Chile, XLIX Congreso Argentino de Genética, VIII Congreso de la Sociedad Uruguaya de Genética, I Congreso Paraguayo de Genética, V Congreso Latinoamericano de Genética Humana. Valdivia, Chile, 5-8 octubre 2021 (modalidad virtual) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846143542912614400 |
score |
12.712165 |