A model driven development approach based on a reference model for predicting disruptive events in a supply process
- Autores
- Fernández, Érica Soledad; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Due to the impossibility of predicting with certainty the occurrence of disruptive events, buffers defined to obtain a robust schedule could not absorb all the changes. Then, local modifications of the schedule are usually performed to avoid a new planning task. For this task, obtaining disruptive event information in advance can help to make better decisions. As a result, ability to predict disruptive events that affect the execution of the supply process an order represents is required. With the objective of satisfying this requirement, this work proposes a model driven development approach based on a reference model to automate the generation of the monitoring model of a supply process able to anticipate the occurrence of a disruptive event by monitoring variables that can explain it. The approach proposes both a reference model to represent the monitoring model independently of the implementation platform, and a specific model to represent the monitoring model with the particular language of the implementation platform. An engine based on transformation rules allows automating the generation of a platform dependent monitoring model from an instance of a platform independent metamodel. The monitoring component of a SCEM system has been developed, which implements the transformation engine as a Bayesian Network model, and uses an appropriate tool to execute it. For an empirical validation of the model three case studies are presented.
Fil: Fernández, Érica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Salomone, Hector Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina - Materia
-
SCEM SYSTEMS
DISRUPTIVE EVENTS
EVENT MANAGEMENT
MONITORING SYSTEM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60492
Ver los metadatos del registro completo
id |
CONICETDig_feba4d96877b6cb0d0ae10d7f8e61f51 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60492 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A model driven development approach based on a reference model for predicting disruptive events in a supply processFernández, Érica SoledadSalomone, Hector EnriqueChiotti, Omar Juan AlfredoSCEM SYSTEMSDISRUPTIVE EVENTSEVENT MANAGEMENTMONITORING SYSTEMhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Due to the impossibility of predicting with certainty the occurrence of disruptive events, buffers defined to obtain a robust schedule could not absorb all the changes. Then, local modifications of the schedule are usually performed to avoid a new planning task. For this task, obtaining disruptive event information in advance can help to make better decisions. As a result, ability to predict disruptive events that affect the execution of the supply process an order represents is required. With the objective of satisfying this requirement, this work proposes a model driven development approach based on a reference model to automate the generation of the monitoring model of a supply process able to anticipate the occurrence of a disruptive event by monitoring variables that can explain it. The approach proposes both a reference model to represent the monitoring model independently of the implementation platform, and a specific model to represent the monitoring model with the particular language of the implementation platform. An engine based on transformation rules allows automating the generation of a platform dependent monitoring model from an instance of a platform independent metamodel. The monitoring component of a SCEM system has been developed, which implements the transformation engine as a Bayesian Network model, and uses an appropriate tool to execute it. For an empirical validation of the model three case studies are presented.Fil: Fernández, Érica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Salomone, Hector Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; ArgentinaElsevier Science2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60492Fernández, Érica Soledad; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo; A model driven development approach based on a reference model for predicting disruptive events in a supply process; Elsevier Science; Computers In Industry; 63; 5; 6-2012; 482-4990166-3615CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compind.2012.02.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166361512000279info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:52Zoai:ri.conicet.gov.ar:11336/60492instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:53.268CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A model driven development approach based on a reference model for predicting disruptive events in a supply process |
title |
A model driven development approach based on a reference model for predicting disruptive events in a supply process |
spellingShingle |
A model driven development approach based on a reference model for predicting disruptive events in a supply process Fernández, Érica Soledad SCEM SYSTEMS DISRUPTIVE EVENTS EVENT MANAGEMENT MONITORING SYSTEM |
title_short |
A model driven development approach based on a reference model for predicting disruptive events in a supply process |
title_full |
A model driven development approach based on a reference model for predicting disruptive events in a supply process |
title_fullStr |
A model driven development approach based on a reference model for predicting disruptive events in a supply process |
title_full_unstemmed |
A model driven development approach based on a reference model for predicting disruptive events in a supply process |
title_sort |
A model driven development approach based on a reference model for predicting disruptive events in a supply process |
dc.creator.none.fl_str_mv |
Fernández, Érica Soledad Salomone, Hector Enrique Chiotti, Omar Juan Alfredo |
author |
Fernández, Érica Soledad |
author_facet |
Fernández, Érica Soledad Salomone, Hector Enrique Chiotti, Omar Juan Alfredo |
author_role |
author |
author2 |
Salomone, Hector Enrique Chiotti, Omar Juan Alfredo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
SCEM SYSTEMS DISRUPTIVE EVENTS EVENT MANAGEMENT MONITORING SYSTEM |
topic |
SCEM SYSTEMS DISRUPTIVE EVENTS EVENT MANAGEMENT MONITORING SYSTEM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Due to the impossibility of predicting with certainty the occurrence of disruptive events, buffers defined to obtain a robust schedule could not absorb all the changes. Then, local modifications of the schedule are usually performed to avoid a new planning task. For this task, obtaining disruptive event information in advance can help to make better decisions. As a result, ability to predict disruptive events that affect the execution of the supply process an order represents is required. With the objective of satisfying this requirement, this work proposes a model driven development approach based on a reference model to automate the generation of the monitoring model of a supply process able to anticipate the occurrence of a disruptive event by monitoring variables that can explain it. The approach proposes both a reference model to represent the monitoring model independently of the implementation platform, and a specific model to represent the monitoring model with the particular language of the implementation platform. An engine based on transformation rules allows automating the generation of a platform dependent monitoring model from an instance of a platform independent metamodel. The monitoring component of a SCEM system has been developed, which implements the transformation engine as a Bayesian Network model, and uses an appropriate tool to execute it. For an empirical validation of the model three case studies are presented. Fil: Fernández, Érica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Salomone, Hector Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina |
description |
Due to the impossibility of predicting with certainty the occurrence of disruptive events, buffers defined to obtain a robust schedule could not absorb all the changes. Then, local modifications of the schedule are usually performed to avoid a new planning task. For this task, obtaining disruptive event information in advance can help to make better decisions. As a result, ability to predict disruptive events that affect the execution of the supply process an order represents is required. With the objective of satisfying this requirement, this work proposes a model driven development approach based on a reference model to automate the generation of the monitoring model of a supply process able to anticipate the occurrence of a disruptive event by monitoring variables that can explain it. The approach proposes both a reference model to represent the monitoring model independently of the implementation platform, and a specific model to represent the monitoring model with the particular language of the implementation platform. An engine based on transformation rules allows automating the generation of a platform dependent monitoring model from an instance of a platform independent metamodel. The monitoring component of a SCEM system has been developed, which implements the transformation engine as a Bayesian Network model, and uses an appropriate tool to execute it. For an empirical validation of the model three case studies are presented. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60492 Fernández, Érica Soledad; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo; A model driven development approach based on a reference model for predicting disruptive events in a supply process; Elsevier Science; Computers In Industry; 63; 5; 6-2012; 482-499 0166-3615 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60492 |
identifier_str_mv |
Fernández, Érica Soledad; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo; A model driven development approach based on a reference model for predicting disruptive events in a supply process; Elsevier Science; Computers In Industry; 63; 5; 6-2012; 482-499 0166-3615 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compind.2012.02.002 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166361512000279 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981321829253120 |
score |
12.48226 |