A model driven development approach based on a reference model for predicting disruptive events in a supply process

Autores
Fernández, Érica Soledad; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Due to the impossibility of predicting with certainty the occurrence of disruptive events, buffers defined to obtain a robust schedule could not absorb all the changes. Then, local modifications of the schedule are usually performed to avoid a new planning task. For this task, obtaining disruptive event information in advance can help to make better decisions. As a result, ability to predict disruptive events that affect the execution of the supply process an order represents is required. With the objective of satisfying this requirement, this work proposes a model driven development approach based on a reference model to automate the generation of the monitoring model of a supply process able to anticipate the occurrence of a disruptive event by monitoring variables that can explain it. The approach proposes both a reference model to represent the monitoring model independently of the implementation platform, and a specific model to represent the monitoring model with the particular language of the implementation platform. An engine based on transformation rules allows automating the generation of a platform dependent monitoring model from an instance of a platform independent metamodel. The monitoring component of a SCEM system has been developed, which implements the transformation engine as a Bayesian Network model, and uses an appropriate tool to execute it. For an empirical validation of the model three case studies are presented.
Fil: Fernández, Érica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Salomone, Hector Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina
Materia
SCEM SYSTEMS
DISRUPTIVE EVENTS
EVENT MANAGEMENT
MONITORING SYSTEM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60492

id CONICETDig_feba4d96877b6cb0d0ae10d7f8e61f51
oai_identifier_str oai:ri.conicet.gov.ar:11336/60492
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A model driven development approach based on a reference model for predicting disruptive events in a supply processFernández, Érica SoledadSalomone, Hector EnriqueChiotti, Omar Juan AlfredoSCEM SYSTEMSDISRUPTIVE EVENTSEVENT MANAGEMENTMONITORING SYSTEMhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Due to the impossibility of predicting with certainty the occurrence of disruptive events, buffers defined to obtain a robust schedule could not absorb all the changes. Then, local modifications of the schedule are usually performed to avoid a new planning task. For this task, obtaining disruptive event information in advance can help to make better decisions. As a result, ability to predict disruptive events that affect the execution of the supply process an order represents is required. With the objective of satisfying this requirement, this work proposes a model driven development approach based on a reference model to automate the generation of the monitoring model of a supply process able to anticipate the occurrence of a disruptive event by monitoring variables that can explain it. The approach proposes both a reference model to represent the monitoring model independently of the implementation platform, and a specific model to represent the monitoring model with the particular language of the implementation platform. An engine based on transformation rules allows automating the generation of a platform dependent monitoring model from an instance of a platform independent metamodel. The monitoring component of a SCEM system has been developed, which implements the transformation engine as a Bayesian Network model, and uses an appropriate tool to execute it. For an empirical validation of the model three case studies are presented.Fil: Fernández, Érica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Salomone, Hector Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; ArgentinaElsevier Science2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60492Fernández, Érica Soledad; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo; A model driven development approach based on a reference model for predicting disruptive events in a supply process; Elsevier Science; Computers In Industry; 63; 5; 6-2012; 482-4990166-3615CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compind.2012.02.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166361512000279info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:52Zoai:ri.conicet.gov.ar:11336/60492instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:53.268CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A model driven development approach based on a reference model for predicting disruptive events in a supply process
title A model driven development approach based on a reference model for predicting disruptive events in a supply process
spellingShingle A model driven development approach based on a reference model for predicting disruptive events in a supply process
Fernández, Érica Soledad
SCEM SYSTEMS
DISRUPTIVE EVENTS
EVENT MANAGEMENT
MONITORING SYSTEM
title_short A model driven development approach based on a reference model for predicting disruptive events in a supply process
title_full A model driven development approach based on a reference model for predicting disruptive events in a supply process
title_fullStr A model driven development approach based on a reference model for predicting disruptive events in a supply process
title_full_unstemmed A model driven development approach based on a reference model for predicting disruptive events in a supply process
title_sort A model driven development approach based on a reference model for predicting disruptive events in a supply process
dc.creator.none.fl_str_mv Fernández, Érica Soledad
Salomone, Hector Enrique
Chiotti, Omar Juan Alfredo
author Fernández, Érica Soledad
author_facet Fernández, Érica Soledad
Salomone, Hector Enrique
Chiotti, Omar Juan Alfredo
author_role author
author2 Salomone, Hector Enrique
Chiotti, Omar Juan Alfredo
author2_role author
author
dc.subject.none.fl_str_mv SCEM SYSTEMS
DISRUPTIVE EVENTS
EVENT MANAGEMENT
MONITORING SYSTEM
topic SCEM SYSTEMS
DISRUPTIVE EVENTS
EVENT MANAGEMENT
MONITORING SYSTEM
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Due to the impossibility of predicting with certainty the occurrence of disruptive events, buffers defined to obtain a robust schedule could not absorb all the changes. Then, local modifications of the schedule are usually performed to avoid a new planning task. For this task, obtaining disruptive event information in advance can help to make better decisions. As a result, ability to predict disruptive events that affect the execution of the supply process an order represents is required. With the objective of satisfying this requirement, this work proposes a model driven development approach based on a reference model to automate the generation of the monitoring model of a supply process able to anticipate the occurrence of a disruptive event by monitoring variables that can explain it. The approach proposes both a reference model to represent the monitoring model independently of the implementation platform, and a specific model to represent the monitoring model with the particular language of the implementation platform. An engine based on transformation rules allows automating the generation of a platform dependent monitoring model from an instance of a platform independent metamodel. The monitoring component of a SCEM system has been developed, which implements the transformation engine as a Bayesian Network model, and uses an appropriate tool to execute it. For an empirical validation of the model three case studies are presented.
Fil: Fernández, Érica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Salomone, Hector Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina
description Due to the impossibility of predicting with certainty the occurrence of disruptive events, buffers defined to obtain a robust schedule could not absorb all the changes. Then, local modifications of the schedule are usually performed to avoid a new planning task. For this task, obtaining disruptive event information in advance can help to make better decisions. As a result, ability to predict disruptive events that affect the execution of the supply process an order represents is required. With the objective of satisfying this requirement, this work proposes a model driven development approach based on a reference model to automate the generation of the monitoring model of a supply process able to anticipate the occurrence of a disruptive event by monitoring variables that can explain it. The approach proposes both a reference model to represent the monitoring model independently of the implementation platform, and a specific model to represent the monitoring model with the particular language of the implementation platform. An engine based on transformation rules allows automating the generation of a platform dependent monitoring model from an instance of a platform independent metamodel. The monitoring component of a SCEM system has been developed, which implements the transformation engine as a Bayesian Network model, and uses an appropriate tool to execute it. For an empirical validation of the model three case studies are presented.
publishDate 2012
dc.date.none.fl_str_mv 2012-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60492
Fernández, Érica Soledad; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo; A model driven development approach based on a reference model for predicting disruptive events in a supply process; Elsevier Science; Computers In Industry; 63; 5; 6-2012; 482-499
0166-3615
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60492
identifier_str_mv Fernández, Érica Soledad; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo; A model driven development approach based on a reference model for predicting disruptive events in a supply process; Elsevier Science; Computers In Industry; 63; 5; 6-2012; 482-499
0166-3615
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compind.2012.02.002
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166361512000279
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981321829253120
score 12.48226