Agent-based monitoring service for management of disruptive events in supply chains

Autores
Fernández, Érica Soledad; Toledo, Carlos Manuel; Galli, Maria Rosa; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Schedules of supply chains are generated with buffers to absorb the effect of disruptive events that could occur during their execution. Schedules can be systematically repaired through specific modifications within buffers by using appropriate decision models that consider the distributed nature of a supply chain. To this aim, information of disruptive events at occurrence or in advance allows decision models to make better decisions. To detect and predict disruptive events along a schedule execution, a service- oriented monitoring subsystem that uses a reference model for defining monitoring models was proposed. This subsystem offers services for collecting execution data of a schedule and environment data, and assessing them to detect/anticipate disruptive events. Because of the distributed nature and the complexity of these services functionalities, this paper presents an agent-based approach for their implementation. This technology allows dealing with supply chain monitoring by structuring monitoring subsystem functionalities as a set of autonomous entities. These entities are able to perform tailored plans created at execution time to concurrently monitor different schedules. A case study is described to try out the implemented prototype system.
Fil: Fernández, Érica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Toledo, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Galli, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Salomone, Hector Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Materia
MULTIAGENT SYSTEM
DISRUPTIVE EVENT
SUPPLY CHAIN
MONITORING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/108143

id CONICETDig_007c8a78e24c6fb929a74ced44107105
oai_identifier_str oai:ri.conicet.gov.ar:11336/108143
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Agent-based monitoring service for management of disruptive events in supply chainsFernández, Érica SoledadToledo, Carlos ManuelGalli, Maria RosaSalomone, Hector EnriqueChiotti, Omar Juan AlfredoMULTIAGENT SYSTEMDISRUPTIVE EVENTSUPPLY CHAINMONITORINGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Schedules of supply chains are generated with buffers to absorb the effect of disruptive events that could occur during their execution. Schedules can be systematically repaired through specific modifications within buffers by using appropriate decision models that consider the distributed nature of a supply chain. To this aim, information of disruptive events at occurrence or in advance allows decision models to make better decisions. To detect and predict disruptive events along a schedule execution, a service- oriented monitoring subsystem that uses a reference model for defining monitoring models was proposed. This subsystem offers services for collecting execution data of a schedule and environment data, and assessing them to detect/anticipate disruptive events. Because of the distributed nature and the complexity of these services functionalities, this paper presents an agent-based approach for their implementation. This technology allows dealing with supply chain monitoring by structuring monitoring subsystem functionalities as a set of autonomous entities. These entities are able to perform tailored plans created at execution time to concurrently monitor different schedules. A case study is described to try out the implemented prototype system.Fil: Fernández, Érica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Toledo, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Galli, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Salomone, Hector Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaElsevier Science2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108143Fernández, Érica Soledad; Toledo, Carlos Manuel; Galli, Maria Rosa; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo; Agent-based monitoring service for management of disruptive events in supply chains; Elsevier Science; Computers In Industry; 70; 1; 6-2015; 89-1010166-36151872-6194CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compind.2015.01.009info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0166361515000196info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:43Zoai:ri.conicet.gov.ar:11336/108143instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:44.168CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Agent-based monitoring service for management of disruptive events in supply chains
title Agent-based monitoring service for management of disruptive events in supply chains
spellingShingle Agent-based monitoring service for management of disruptive events in supply chains
Fernández, Érica Soledad
MULTIAGENT SYSTEM
DISRUPTIVE EVENT
SUPPLY CHAIN
MONITORING
title_short Agent-based monitoring service for management of disruptive events in supply chains
title_full Agent-based monitoring service for management of disruptive events in supply chains
title_fullStr Agent-based monitoring service for management of disruptive events in supply chains
title_full_unstemmed Agent-based monitoring service for management of disruptive events in supply chains
title_sort Agent-based monitoring service for management of disruptive events in supply chains
dc.creator.none.fl_str_mv Fernández, Érica Soledad
Toledo, Carlos Manuel
Galli, Maria Rosa
Salomone, Hector Enrique
Chiotti, Omar Juan Alfredo
author Fernández, Érica Soledad
author_facet Fernández, Érica Soledad
Toledo, Carlos Manuel
Galli, Maria Rosa
Salomone, Hector Enrique
Chiotti, Omar Juan Alfredo
author_role author
author2 Toledo, Carlos Manuel
Galli, Maria Rosa
Salomone, Hector Enrique
Chiotti, Omar Juan Alfredo
author2_role author
author
author
author
dc.subject.none.fl_str_mv MULTIAGENT SYSTEM
DISRUPTIVE EVENT
SUPPLY CHAIN
MONITORING
topic MULTIAGENT SYSTEM
DISRUPTIVE EVENT
SUPPLY CHAIN
MONITORING
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Schedules of supply chains are generated with buffers to absorb the effect of disruptive events that could occur during their execution. Schedules can be systematically repaired through specific modifications within buffers by using appropriate decision models that consider the distributed nature of a supply chain. To this aim, information of disruptive events at occurrence or in advance allows decision models to make better decisions. To detect and predict disruptive events along a schedule execution, a service- oriented monitoring subsystem that uses a reference model for defining monitoring models was proposed. This subsystem offers services for collecting execution data of a schedule and environment data, and assessing them to detect/anticipate disruptive events. Because of the distributed nature and the complexity of these services functionalities, this paper presents an agent-based approach for their implementation. This technology allows dealing with supply chain monitoring by structuring monitoring subsystem functionalities as a set of autonomous entities. These entities are able to perform tailored plans created at execution time to concurrently monitor different schedules. A case study is described to try out the implemented prototype system.
Fil: Fernández, Érica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Toledo, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Galli, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Salomone, Hector Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
description Schedules of supply chains are generated with buffers to absorb the effect of disruptive events that could occur during their execution. Schedules can be systematically repaired through specific modifications within buffers by using appropriate decision models that consider the distributed nature of a supply chain. To this aim, information of disruptive events at occurrence or in advance allows decision models to make better decisions. To detect and predict disruptive events along a schedule execution, a service- oriented monitoring subsystem that uses a reference model for defining monitoring models was proposed. This subsystem offers services for collecting execution data of a schedule and environment data, and assessing them to detect/anticipate disruptive events. Because of the distributed nature and the complexity of these services functionalities, this paper presents an agent-based approach for their implementation. This technology allows dealing with supply chain monitoring by structuring monitoring subsystem functionalities as a set of autonomous entities. These entities are able to perform tailored plans created at execution time to concurrently monitor different schedules. A case study is described to try out the implemented prototype system.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/108143
Fernández, Érica Soledad; Toledo, Carlos Manuel; Galli, Maria Rosa; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo; Agent-based monitoring service for management of disruptive events in supply chains; Elsevier Science; Computers In Industry; 70; 1; 6-2015; 89-101
0166-3615
1872-6194
CONICET Digital
CONICET
url http://hdl.handle.net/11336/108143
identifier_str_mv Fernández, Érica Soledad; Toledo, Carlos Manuel; Galli, Maria Rosa; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo; Agent-based monitoring service for management of disruptive events in supply chains; Elsevier Science; Computers In Industry; 70; 1; 6-2015; 89-101
0166-3615
1872-6194
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compind.2015.01.009
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0166361515000196
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613701687050240
score 13.070432