Classification of mental tasks using different spectral estimation methods
- Autores
- Diez, Pablo Federico; Laciar Leber, Eric; Mut, Vicente Antonio; Avila, Enrique; Torres, Abel
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- In this chapter, parametric (Burg) and non parametric (standard and Welch) spectral methods were utilized in order to estimate the spectral content of EEG signals for different mental tasks. Two parameters were utilized to analyze the behaviour of every spectral estimation methods: the Pm and the RMS of different frequency bands. These methods were tested in two different databases. We found that the use of the RMS allows higher classification accuracies with any spectral estimation technique. The Welch periodogram and Burg method are preferable in front of the standard periodogram. The use of Welch or Burg methods seems to be indistinct due to they performed similar, although in some subjects performed better one than other.
Fil: Diez, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina
Fil: Laciar Leber, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina
Fil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Avila, Enrique. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina
Fil: Torres, Abel. Universidad Politécnica de Catalunya; España - Materia
-
EEG SIGNAL PROCESSING
BRAIN COMPUTER INTERFACE
MENTAL TASKS IDENTIFICATION
SPECTRAL ESTIMATION METHODS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/159372
Ver los metadatos del registro completo
id |
CONICETDig_fe48ffa6b28b77d070ad51471aa8bc1b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/159372 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classification of mental tasks using different spectral estimation methodsDiez, Pablo FedericoLaciar Leber, EricMut, Vicente AntonioAvila, EnriqueTorres, AbelEEG SIGNAL PROCESSINGBRAIN COMPUTER INTERFACEMENTAL TASKS IDENTIFICATIONSPECTRAL ESTIMATION METHODShttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2In this chapter, parametric (Burg) and non parametric (standard and Welch) spectral methods were utilized in order to estimate the spectral content of EEG signals for different mental tasks. Two parameters were utilized to analyze the behaviour of every spectral estimation methods: the Pm and the RMS of different frequency bands. These methods were tested in two different databases. We found that the use of the RMS allows higher classification accuracies with any spectral estimation technique. The Welch periodogram and Burg method are preferable in front of the standard periodogram. The use of Welch or Burg methods seems to be indistinct due to they performed similar, although in some subjects performed better one than other.Fil: Diez, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; ArgentinaFil: Laciar Leber, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; ArgentinaFil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Avila, Enrique. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; ArgentinaFil: Torres, Abel. Universidad Politécnica de Catalunya; EspañaIntechOpenBarros de Mello, Carlos Alexandre2009info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/159372Diez, Pablo Federico; Laciar Leber, Eric; Mut, Vicente Antonio; Avila, Enrique; Torres, Abel; Classification of mental tasks using different spectral estimation methods; IntechOpen; 2009; 287-306978-953-307-013-1CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/chapters/8805info:eu-repo/semantics/altIdentifier/doi/10.5772/7863info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:01Zoai:ri.conicet.gov.ar:11336/159372instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:02.192CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classification of mental tasks using different spectral estimation methods |
title |
Classification of mental tasks using different spectral estimation methods |
spellingShingle |
Classification of mental tasks using different spectral estimation methods Diez, Pablo Federico EEG SIGNAL PROCESSING BRAIN COMPUTER INTERFACE MENTAL TASKS IDENTIFICATION SPECTRAL ESTIMATION METHODS |
title_short |
Classification of mental tasks using different spectral estimation methods |
title_full |
Classification of mental tasks using different spectral estimation methods |
title_fullStr |
Classification of mental tasks using different spectral estimation methods |
title_full_unstemmed |
Classification of mental tasks using different spectral estimation methods |
title_sort |
Classification of mental tasks using different spectral estimation methods |
dc.creator.none.fl_str_mv |
Diez, Pablo Federico Laciar Leber, Eric Mut, Vicente Antonio Avila, Enrique Torres, Abel |
author |
Diez, Pablo Federico |
author_facet |
Diez, Pablo Federico Laciar Leber, Eric Mut, Vicente Antonio Avila, Enrique Torres, Abel |
author_role |
author |
author2 |
Laciar Leber, Eric Mut, Vicente Antonio Avila, Enrique Torres, Abel |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Barros de Mello, Carlos Alexandre |
dc.subject.none.fl_str_mv |
EEG SIGNAL PROCESSING BRAIN COMPUTER INTERFACE MENTAL TASKS IDENTIFICATION SPECTRAL ESTIMATION METHODS |
topic |
EEG SIGNAL PROCESSING BRAIN COMPUTER INTERFACE MENTAL TASKS IDENTIFICATION SPECTRAL ESTIMATION METHODS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this chapter, parametric (Burg) and non parametric (standard and Welch) spectral methods were utilized in order to estimate the spectral content of EEG signals for different mental tasks. Two parameters were utilized to analyze the behaviour of every spectral estimation methods: the Pm and the RMS of different frequency bands. These methods were tested in two different databases. We found that the use of the RMS allows higher classification accuracies with any spectral estimation technique. The Welch periodogram and Burg method are preferable in front of the standard periodogram. The use of Welch or Burg methods seems to be indistinct due to they performed similar, although in some subjects performed better one than other. Fil: Diez, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina Fil: Laciar Leber, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina Fil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Avila, Enrique. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina Fil: Torres, Abel. Universidad Politécnica de Catalunya; España |
description |
In this chapter, parametric (Burg) and non parametric (standard and Welch) spectral methods were utilized in order to estimate the spectral content of EEG signals for different mental tasks. Two parameters were utilized to analyze the behaviour of every spectral estimation methods: the Pm and the RMS of different frequency bands. These methods were tested in two different databases. We found that the use of the RMS allows higher classification accuracies with any spectral estimation technique. The Welch periodogram and Burg method are preferable in front of the standard periodogram. The use of Welch or Burg methods seems to be indistinct due to they performed similar, although in some subjects performed better one than other. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/bookPart http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
status_str |
publishedVersion |
format |
bookPart |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/159372 Diez, Pablo Federico; Laciar Leber, Eric; Mut, Vicente Antonio; Avila, Enrique; Torres, Abel; Classification of mental tasks using different spectral estimation methods; IntechOpen; 2009; 287-306 978-953-307-013-1 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/159372 |
identifier_str_mv |
Diez, Pablo Federico; Laciar Leber, Eric; Mut, Vicente Antonio; Avila, Enrique; Torres, Abel; Classification of mental tasks using different spectral estimation methods; IntechOpen; 2009; 287-306 978-953-307-013-1 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/chapters/8805 info:eu-repo/semantics/altIdentifier/doi/10.5772/7863 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IntechOpen |
publisher.none.fl_str_mv |
IntechOpen |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614464468418560 |
score |
13.070432 |