EEG/MEG Kalman-like source estimation

Autores
Bria, Oscar N.
Año de publicación
2003
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The estimation of the instant location and strength of sources takes a considerable importance for many areas of sensor space-array processing, e.g., brain activity in non-invasive electro-medicine. State-space models are a well suited framework for solving that dynamic estimation problem and they are in the core of our studies. Related to brain electrical activity, the state estimation problem can be solved by analyzing spatio-temporal data provided by EEG/MEG measures. Nonlinear Kalman-like filter is proposed for estimating locustemporal data related to electrical activity in the brain. The experimental framework is described.
Eje: Procesamiento de Señales
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
EEG/MEG
source estimation
Signal processing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/21512

id SEDICI_3108015b90b881832d405310530e40fb
oai_identifier_str oai:sedici.unlp.edu.ar:10915/21512
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling EEG/MEG Kalman-like source estimationBria, Oscar N.Ciencias InformáticasEEG/MEGsource estimationSignal processingThe estimation of the instant location and strength of sources takes a considerable importance for many areas of sensor space-array processing, e.g., brain activity in non-invasive electro-medicine. State-space models are a well suited framework for solving that dynamic estimation problem and they are in the core of our studies. Related to brain electrical activity, the state estimation problem can be solved by analyzing spatio-temporal data provided by EEG/MEG measures. Nonlinear Kalman-like filter is proposed for estimating locustemporal data related to electrical activity in the brain. The experimental framework is described.Eje: Procesamiento de SeñalesRed de Universidades con Carreras en Informática (RedUNCI)2003-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf71-75http://sedici.unlp.edu.ar/handle/10915/21512enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:31Zoai:sedici.unlp.edu.ar:10915/21512Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:31.327SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv EEG/MEG Kalman-like source estimation
title EEG/MEG Kalman-like source estimation
spellingShingle EEG/MEG Kalman-like source estimation
Bria, Oscar N.
Ciencias Informáticas
EEG/MEG
source estimation
Signal processing
title_short EEG/MEG Kalman-like source estimation
title_full EEG/MEG Kalman-like source estimation
title_fullStr EEG/MEG Kalman-like source estimation
title_full_unstemmed EEG/MEG Kalman-like source estimation
title_sort EEG/MEG Kalman-like source estimation
dc.creator.none.fl_str_mv Bria, Oscar N.
author Bria, Oscar N.
author_facet Bria, Oscar N.
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
EEG/MEG
source estimation
Signal processing
topic Ciencias Informáticas
EEG/MEG
source estimation
Signal processing
dc.description.none.fl_txt_mv The estimation of the instant location and strength of sources takes a considerable importance for many areas of sensor space-array processing, e.g., brain activity in non-invasive electro-medicine. State-space models are a well suited framework for solving that dynamic estimation problem and they are in the core of our studies. Related to brain electrical activity, the state estimation problem can be solved by analyzing spatio-temporal data provided by EEG/MEG measures. Nonlinear Kalman-like filter is proposed for estimating locustemporal data related to electrical activity in the brain. The experimental framework is described.
Eje: Procesamiento de Señales
Red de Universidades con Carreras en Informática (RedUNCI)
description The estimation of the instant location and strength of sources takes a considerable importance for many areas of sensor space-array processing, e.g., brain activity in non-invasive electro-medicine. State-space models are a well suited framework for solving that dynamic estimation problem and they are in the core of our studies. Related to brain electrical activity, the state estimation problem can be solved by analyzing spatio-temporal data provided by EEG/MEG measures. Nonlinear Kalman-like filter is proposed for estimating locustemporal data related to electrical activity in the brain. The experimental framework is described.
publishDate 2003
dc.date.none.fl_str_mv 2003-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/21512
url http://sedici.unlp.edu.ar/handle/10915/21512
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
71-75
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260112743333888
score 13.13397