Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model
- Autores
- Peralta, Juan Manuel; Rubiolo, Amelia Catalina; Zorrilla, Susana
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Immersion chilling and freezing (ICF) of foods use aqueous solutions at low temperature that are considered secondary refrigerants. These solutions contain solutes such as NaCl, CaCl2, KCl, ethanol, glucose, etc. The ICF processes have several advantages over the conventional food chilling and freezing methods. The aim of this work was to study the behavior of an excess Gibbs energy model for predicting thermodynamic properties of mixtures of electrolytes and non-electrolytes, considering the physical conditions used in immersion chilling and freezing of foods. The extended UNIQUAC model was used. Data obtained from literature for heat capacity, density and freezing point for binary aqueous solutions of NaCl, CaCl2, KCl and ethanol were compared with predicted values. Additional parameters for the density estimation were included into the model. In general, the model accuracy was satisfactory.
Fil: Peralta, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Rubiolo, Amelia Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Zorrilla, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Refrigerant Liquids;
Foods
Prediction
Properties - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25938
Ver los metadatos del registro completo
id |
CONICETDig_fe1986f5c1358ae2455a88c9a2ff3f65 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25938 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy modelPeralta, Juan ManuelRubiolo, Amelia CatalinaZorrilla, SusanaRefrigerant Liquids;FoodsPredictionPropertieshttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Immersion chilling and freezing (ICF) of foods use aqueous solutions at low temperature that are considered secondary refrigerants. These solutions contain solutes such as NaCl, CaCl2, KCl, ethanol, glucose, etc. The ICF processes have several advantages over the conventional food chilling and freezing methods. The aim of this work was to study the behavior of an excess Gibbs energy model for predicting thermodynamic properties of mixtures of electrolytes and non-electrolytes, considering the physical conditions used in immersion chilling and freezing of foods. The extended UNIQUAC model was used. Data obtained from literature for heat capacity, density and freezing point for binary aqueous solutions of NaCl, CaCl2, KCl and ethanol were compared with predicted values. Additional parameters for the density estimation were included into the model. In general, the model accuracy was satisfactory.Fil: Peralta, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Rubiolo, Amelia Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Zorrilla, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaElsevier2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25938Peralta, Juan Manuel; Rubiolo, Amelia Catalina; Zorrilla, Susana; Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model; Elsevier; Journal of Food Engineering; 82; 4; 12-2007; 548-5580260-8774CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0260877407001823info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfoodeng.2007.03.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:48Zoai:ri.conicet.gov.ar:11336/25938instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:49.086CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model |
title |
Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model |
spellingShingle |
Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model Peralta, Juan Manuel Refrigerant Liquids; Foods Prediction Properties |
title_short |
Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model |
title_full |
Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model |
title_fullStr |
Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model |
title_full_unstemmed |
Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model |
title_sort |
Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model |
dc.creator.none.fl_str_mv |
Peralta, Juan Manuel Rubiolo, Amelia Catalina Zorrilla, Susana |
author |
Peralta, Juan Manuel |
author_facet |
Peralta, Juan Manuel Rubiolo, Amelia Catalina Zorrilla, Susana |
author_role |
author |
author2 |
Rubiolo, Amelia Catalina Zorrilla, Susana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Refrigerant Liquids; Foods Prediction Properties |
topic |
Refrigerant Liquids; Foods Prediction Properties |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Immersion chilling and freezing (ICF) of foods use aqueous solutions at low temperature that are considered secondary refrigerants. These solutions contain solutes such as NaCl, CaCl2, KCl, ethanol, glucose, etc. The ICF processes have several advantages over the conventional food chilling and freezing methods. The aim of this work was to study the behavior of an excess Gibbs energy model for predicting thermodynamic properties of mixtures of electrolytes and non-electrolytes, considering the physical conditions used in immersion chilling and freezing of foods. The extended UNIQUAC model was used. Data obtained from literature for heat capacity, density and freezing point for binary aqueous solutions of NaCl, CaCl2, KCl and ethanol were compared with predicted values. Additional parameters for the density estimation were included into the model. In general, the model accuracy was satisfactory. Fil: Peralta, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Rubiolo, Amelia Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Zorrilla, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
Immersion chilling and freezing (ICF) of foods use aqueous solutions at low temperature that are considered secondary refrigerants. These solutions contain solutes such as NaCl, CaCl2, KCl, ethanol, glucose, etc. The ICF processes have several advantages over the conventional food chilling and freezing methods. The aim of this work was to study the behavior of an excess Gibbs energy model for predicting thermodynamic properties of mixtures of electrolytes and non-electrolytes, considering the physical conditions used in immersion chilling and freezing of foods. The extended UNIQUAC model was used. Data obtained from literature for heat capacity, density and freezing point for binary aqueous solutions of NaCl, CaCl2, KCl and ethanol were compared with predicted values. Additional parameters for the density estimation were included into the model. In general, the model accuracy was satisfactory. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25938 Peralta, Juan Manuel; Rubiolo, Amelia Catalina; Zorrilla, Susana; Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model; Elsevier; Journal of Food Engineering; 82; 4; 12-2007; 548-558 0260-8774 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25938 |
identifier_str_mv |
Peralta, Juan Manuel; Rubiolo, Amelia Catalina; Zorrilla, Susana; Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model; Elsevier; Journal of Food Engineering; 82; 4; 12-2007; 548-558 0260-8774 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0260877407001823 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfoodeng.2007.03.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613959517208576 |
score |
13.070432 |