Variants of uncertain significance (VUS) model show
- Autores
- Carcione, María Micaela; Mazzanti, Chiara; Luce, Leonela Natalia; Giliberto, Florencia
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Muscular Dystrophies (MD) are a group of rare inherited diseases that cause weakness and progressive degeneration of muscle tissue. The clinical symptoms of these pathologies overlap, hindering differential diagnosis, which is of paramount importance to establish the standard of care. Among them, Dystrophinopathies are the most prevalent type of MD and are caused by mutations in the DMD gene. Genetic or molecular studies are the gold standard for reaching a MD differential diagnosis, for which molecular alterations in MD associated genes can be detected by Whole Exome Sequencing (WES). One of the major challenges of the Next Generation Sequencing (NGS) data interpretation is the occurrence of Variants of Uncertain Significance (VUS). The present work aims to provide a thorough strategy to analyze the effect of VUS, applying different predictive software, conservation/evolutionary and protein modeling tools. A cohort of 141 patients with presumptive clinical diagnosis of dystrophinopathy and negative MLPA result was analyzed by WES. We deepened the screening to all the MD associated genes included in the Gene Table of Neuromuscular Disorders. In a subset of 6 individuals, we detected VUS in the following genes: DMD (2/6), FKRP (2/6) and POMT2 (2/6). We implemented several predictive software to analyze the effect of VUS, and UCSF ChimeraX for protein modeling. Also, in one case, we could do a segregation analysis of the variants. The implemented strategy provided new insights to predict more accurately the effect of the identified sequence variants and even reclassified them. Finally, this work provides alternative approaches for the analysis of sequence variants, especially when functional studies are not possible to be carried out, to determine the effect of VUS.
Fil: Carcione, María Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina
Fil: Mazzanti, Chiara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina
Fil: Luce, Leonela Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina
Fil: Giliberto, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina
LXV Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXVIII Reunión Anual de la Sociedad Argentina de Inmunología y Reunión Anual de la Sociedad Argentina de Fisiología
Buenos Aires
Argentina
Sociedad Argentina de Investigación Clínica
Sociedad Argentina de Inmunología
Sociedad Argentina de Fisiología - Materia
-
VARIANTS OF UNCERTAIN SIGNIFICANCE
Muscular Dystrophies
molecular studies
differential diagnosis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/223701
Ver los metadatos del registro completo
id |
CONICETDig_fdf57b340d1d95ec902f93cbe446cf1d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/223701 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Variants of uncertain significance (VUS) model showCarcione, María MicaelaMazzanti, ChiaraLuce, Leonela NataliaGiliberto, FlorenciaVARIANTS OF UNCERTAIN SIGNIFICANCEMuscular Dystrophiesmolecular studiesdifferential diagnosishttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Muscular Dystrophies (MD) are a group of rare inherited diseases that cause weakness and progressive degeneration of muscle tissue. The clinical symptoms of these pathologies overlap, hindering differential diagnosis, which is of paramount importance to establish the standard of care. Among them, Dystrophinopathies are the most prevalent type of MD and are caused by mutations in the DMD gene. Genetic or molecular studies are the gold standard for reaching a MD differential diagnosis, for which molecular alterations in MD associated genes can be detected by Whole Exome Sequencing (WES). One of the major challenges of the Next Generation Sequencing (NGS) data interpretation is the occurrence of Variants of Uncertain Significance (VUS). The present work aims to provide a thorough strategy to analyze the effect of VUS, applying different predictive software, conservation/evolutionary and protein modeling tools. A cohort of 141 patients with presumptive clinical diagnosis of dystrophinopathy and negative MLPA result was analyzed by WES. We deepened the screening to all the MD associated genes included in the Gene Table of Neuromuscular Disorders. In a subset of 6 individuals, we detected VUS in the following genes: DMD (2/6), FKRP (2/6) and POMT2 (2/6). We implemented several predictive software to analyze the effect of VUS, and UCSF ChimeraX for protein modeling. Also, in one case, we could do a segregation analysis of the variants. The implemented strategy provided new insights to predict more accurately the effect of the identified sequence variants and even reclassified them. Finally, this work provides alternative approaches for the analysis of sequence variants, especially when functional studies are not possible to be carried out, to determine the effect of VUS.Fil: Carcione, María Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Mazzanti, Chiara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Luce, Leonela Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Giliberto, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaLXV Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXVIII Reunión Anual de la Sociedad Argentina de Inmunología y Reunión Anual de la Sociedad Argentina de FisiologíaBuenos AiresArgentinaSociedad Argentina de Investigación ClínicaSociedad Argentina de InmunologíaSociedad Argentina de FisiologíaFundación Revista Medicina2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/223701Variants of uncertain significance (VUS) model show; LXV Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXVIII Reunión Anual de la Sociedad Argentina de Inmunología y Reunión Anual de la Sociedad Argentina de Fisiología; Buenos Aires; Argentina; 2020; 72-730025-7680CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://medicinabuenosaires.com/revistas/vol80-20/s5/Mv80s5.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:21Zoai:ri.conicet.gov.ar:11336/223701instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:21.77CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Variants of uncertain significance (VUS) model show |
title |
Variants of uncertain significance (VUS) model show |
spellingShingle |
Variants of uncertain significance (VUS) model show Carcione, María Micaela VARIANTS OF UNCERTAIN SIGNIFICANCE Muscular Dystrophies molecular studies differential diagnosis |
title_short |
Variants of uncertain significance (VUS) model show |
title_full |
Variants of uncertain significance (VUS) model show |
title_fullStr |
Variants of uncertain significance (VUS) model show |
title_full_unstemmed |
Variants of uncertain significance (VUS) model show |
title_sort |
Variants of uncertain significance (VUS) model show |
dc.creator.none.fl_str_mv |
Carcione, María Micaela Mazzanti, Chiara Luce, Leonela Natalia Giliberto, Florencia |
author |
Carcione, María Micaela |
author_facet |
Carcione, María Micaela Mazzanti, Chiara Luce, Leonela Natalia Giliberto, Florencia |
author_role |
author |
author2 |
Mazzanti, Chiara Luce, Leonela Natalia Giliberto, Florencia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
VARIANTS OF UNCERTAIN SIGNIFICANCE Muscular Dystrophies molecular studies differential diagnosis |
topic |
VARIANTS OF UNCERTAIN SIGNIFICANCE Muscular Dystrophies molecular studies differential diagnosis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Muscular Dystrophies (MD) are a group of rare inherited diseases that cause weakness and progressive degeneration of muscle tissue. The clinical symptoms of these pathologies overlap, hindering differential diagnosis, which is of paramount importance to establish the standard of care. Among them, Dystrophinopathies are the most prevalent type of MD and are caused by mutations in the DMD gene. Genetic or molecular studies are the gold standard for reaching a MD differential diagnosis, for which molecular alterations in MD associated genes can be detected by Whole Exome Sequencing (WES). One of the major challenges of the Next Generation Sequencing (NGS) data interpretation is the occurrence of Variants of Uncertain Significance (VUS). The present work aims to provide a thorough strategy to analyze the effect of VUS, applying different predictive software, conservation/evolutionary and protein modeling tools. A cohort of 141 patients with presumptive clinical diagnosis of dystrophinopathy and negative MLPA result was analyzed by WES. We deepened the screening to all the MD associated genes included in the Gene Table of Neuromuscular Disorders. In a subset of 6 individuals, we detected VUS in the following genes: DMD (2/6), FKRP (2/6) and POMT2 (2/6). We implemented several predictive software to analyze the effect of VUS, and UCSF ChimeraX for protein modeling. Also, in one case, we could do a segregation analysis of the variants. The implemented strategy provided new insights to predict more accurately the effect of the identified sequence variants and even reclassified them. Finally, this work provides alternative approaches for the analysis of sequence variants, especially when functional studies are not possible to be carried out, to determine the effect of VUS. Fil: Carcione, María Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina Fil: Mazzanti, Chiara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina Fil: Luce, Leonela Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina Fil: Giliberto, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina LXV Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXVIII Reunión Anual de la Sociedad Argentina de Inmunología y Reunión Anual de la Sociedad Argentina de Fisiología Buenos Aires Argentina Sociedad Argentina de Investigación Clínica Sociedad Argentina de Inmunología Sociedad Argentina de Fisiología |
description |
Muscular Dystrophies (MD) are a group of rare inherited diseases that cause weakness and progressive degeneration of muscle tissue. The clinical symptoms of these pathologies overlap, hindering differential diagnosis, which is of paramount importance to establish the standard of care. Among them, Dystrophinopathies are the most prevalent type of MD and are caused by mutations in the DMD gene. Genetic or molecular studies are the gold standard for reaching a MD differential diagnosis, for which molecular alterations in MD associated genes can be detected by Whole Exome Sequencing (WES). One of the major challenges of the Next Generation Sequencing (NGS) data interpretation is the occurrence of Variants of Uncertain Significance (VUS). The present work aims to provide a thorough strategy to analyze the effect of VUS, applying different predictive software, conservation/evolutionary and protein modeling tools. A cohort of 141 patients with presumptive clinical diagnosis of dystrophinopathy and negative MLPA result was analyzed by WES. We deepened the screening to all the MD associated genes included in the Gene Table of Neuromuscular Disorders. In a subset of 6 individuals, we detected VUS in the following genes: DMD (2/6), FKRP (2/6) and POMT2 (2/6). We implemented several predictive software to analyze the effect of VUS, and UCSF ChimeraX for protein modeling. Also, in one case, we could do a segregation analysis of the variants. The implemented strategy provided new insights to predict more accurately the effect of the identified sequence variants and even reclassified them. Finally, this work provides alternative approaches for the analysis of sequence variants, especially when functional studies are not possible to be carried out, to determine the effect of VUS. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Reunión Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/223701 Variants of uncertain significance (VUS) model show; LXV Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXVIII Reunión Anual de la Sociedad Argentina de Inmunología y Reunión Anual de la Sociedad Argentina de Fisiología; Buenos Aires; Argentina; 2020; 72-73 0025-7680 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/223701 |
identifier_str_mv |
Variants of uncertain significance (VUS) model show; LXV Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXVIII Reunión Anual de la Sociedad Argentina de Inmunología y Reunión Anual de la Sociedad Argentina de Fisiología; Buenos Aires; Argentina; 2020; 72-73 0025-7680 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://medicinabuenosaires.com/revistas/vol80-20/s5/Mv80s5.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Fundación Revista Medicina |
publisher.none.fl_str_mv |
Fundación Revista Medicina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613991596294144 |
score |
13.070432 |