Resilient scheduling under uncertain processing times: a hybrid CP/TOC approach
- Autores
- Novara, Franco Matías; Henning, Gabriela Patricia
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Uncertainty and variability are inherent characteristics of industrial environments that affect production schedules and could turn them unfeasible or economically unattractive. Process-inherent uncertainty, one of the multiple stochasticity sources, influences task processing times, transforming them into one of the main uncertain parameters. This work proposes a scheduling approach to consider this situation in a proactive fashion at the decision stage, without resorting to the generation of scenarios. It relies on a Constraint Programming (CP) model that focusses on the Capacity Constrained Stage (CCS) to reduce its complexity and size. The proposal is tested with various instances of three case studies, showing that the approach is computationally efficient. The attained agendas can effectively absorb the processing times variabilities in an efficient way, exhibiting a resilient behaviour. To assess the schedules, they are compared with those reached by a deterministic CP formulation and with the agendas obtained by means of another proactive methodology proposed by the same authors.
Fil: Novara, Franco Matías. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Henning, Gabriela Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
CONSTRAINT PROGRAMMING
MULTIPRODUCT MULTISTAGE BATCH PLANTS
SCHEDULING
THEORY OF CONSTRAINTS
UNCERTAIN PROCESSING TIMES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/86622
Ver los metadatos del registro completo
id |
CONICETDig_7f345cf167ab4f22c3eaf12e0b0df895 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/86622 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Resilient scheduling under uncertain processing times: a hybrid CP/TOC approachNovara, Franco MatíasHenning, Gabriela PatriciaCONSTRAINT PROGRAMMINGMULTIPRODUCT MULTISTAGE BATCH PLANTSSCHEDULINGTHEORY OF CONSTRAINTSUNCERTAIN PROCESSING TIMEShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Uncertainty and variability are inherent characteristics of industrial environments that affect production schedules and could turn them unfeasible or economically unattractive. Process-inherent uncertainty, one of the multiple stochasticity sources, influences task processing times, transforming them into one of the main uncertain parameters. This work proposes a scheduling approach to consider this situation in a proactive fashion at the decision stage, without resorting to the generation of scenarios. It relies on a Constraint Programming (CP) model that focusses on the Capacity Constrained Stage (CCS) to reduce its complexity and size. The proposal is tested with various instances of three case studies, showing that the approach is computationally efficient. The attained agendas can effectively absorb the processing times variabilities in an efficient way, exhibiting a resilient behaviour. To assess the schedules, they are compared with those reached by a deterministic CP formulation and with the agendas obtained by means of another proactive methodology proposed by the same authors.Fil: Novara, Franco Matías. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Henning, Gabriela Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaElsevier B.V.2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86622Novara, Franco Matías; Henning, Gabriela Patricia; Resilient scheduling under uncertain processing times: a hybrid CP/TOC approach; Elsevier B.V.; Computer Aided Chemical Engineering; 44; 1-2018; 1261-12661570-7946CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/B978-0-444-64241-7.50205-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:44Zoai:ri.conicet.gov.ar:11336/86622instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:44.583CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Resilient scheduling under uncertain processing times: a hybrid CP/TOC approach |
title |
Resilient scheduling under uncertain processing times: a hybrid CP/TOC approach |
spellingShingle |
Resilient scheduling under uncertain processing times: a hybrid CP/TOC approach Novara, Franco Matías CONSTRAINT PROGRAMMING MULTIPRODUCT MULTISTAGE BATCH PLANTS SCHEDULING THEORY OF CONSTRAINTS UNCERTAIN PROCESSING TIMES |
title_short |
Resilient scheduling under uncertain processing times: a hybrid CP/TOC approach |
title_full |
Resilient scheduling under uncertain processing times: a hybrid CP/TOC approach |
title_fullStr |
Resilient scheduling under uncertain processing times: a hybrid CP/TOC approach |
title_full_unstemmed |
Resilient scheduling under uncertain processing times: a hybrid CP/TOC approach |
title_sort |
Resilient scheduling under uncertain processing times: a hybrid CP/TOC approach |
dc.creator.none.fl_str_mv |
Novara, Franco Matías Henning, Gabriela Patricia |
author |
Novara, Franco Matías |
author_facet |
Novara, Franco Matías Henning, Gabriela Patricia |
author_role |
author |
author2 |
Henning, Gabriela Patricia |
author2_role |
author |
dc.subject.none.fl_str_mv |
CONSTRAINT PROGRAMMING MULTIPRODUCT MULTISTAGE BATCH PLANTS SCHEDULING THEORY OF CONSTRAINTS UNCERTAIN PROCESSING TIMES |
topic |
CONSTRAINT PROGRAMMING MULTIPRODUCT MULTISTAGE BATCH PLANTS SCHEDULING THEORY OF CONSTRAINTS UNCERTAIN PROCESSING TIMES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Uncertainty and variability are inherent characteristics of industrial environments that affect production schedules and could turn them unfeasible or economically unattractive. Process-inherent uncertainty, one of the multiple stochasticity sources, influences task processing times, transforming them into one of the main uncertain parameters. This work proposes a scheduling approach to consider this situation in a proactive fashion at the decision stage, without resorting to the generation of scenarios. It relies on a Constraint Programming (CP) model that focusses on the Capacity Constrained Stage (CCS) to reduce its complexity and size. The proposal is tested with various instances of three case studies, showing that the approach is computationally efficient. The attained agendas can effectively absorb the processing times variabilities in an efficient way, exhibiting a resilient behaviour. To assess the schedules, they are compared with those reached by a deterministic CP formulation and with the agendas obtained by means of another proactive methodology proposed by the same authors. Fil: Novara, Franco Matías. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Henning, Gabriela Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
Uncertainty and variability are inherent characteristics of industrial environments that affect production schedules and could turn them unfeasible or economically unattractive. Process-inherent uncertainty, one of the multiple stochasticity sources, influences task processing times, transforming them into one of the main uncertain parameters. This work proposes a scheduling approach to consider this situation in a proactive fashion at the decision stage, without resorting to the generation of scenarios. It relies on a Constraint Programming (CP) model that focusses on the Capacity Constrained Stage (CCS) to reduce its complexity and size. The proposal is tested with various instances of three case studies, showing that the approach is computationally efficient. The attained agendas can effectively absorb the processing times variabilities in an efficient way, exhibiting a resilient behaviour. To assess the schedules, they are compared with those reached by a deterministic CP formulation and with the agendas obtained by means of another proactive methodology proposed by the same authors. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/86622 Novara, Franco Matías; Henning, Gabriela Patricia; Resilient scheduling under uncertain processing times: a hybrid CP/TOC approach; Elsevier B.V.; Computer Aided Chemical Engineering; 44; 1-2018; 1261-1266 1570-7946 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/86622 |
identifier_str_mv |
Novara, Franco Matías; Henning, Gabriela Patricia; Resilient scheduling under uncertain processing times: a hybrid CP/TOC approach; Elsevier B.V.; Computer Aided Chemical Engineering; 44; 1-2018; 1261-1266 1570-7946 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/B978-0-444-64241-7.50205-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269113712377856 |
score |
13.13397 |