A generalization of the boundedness of certain integral operators in variable lebesgue spaces
- Autores
- Urciuolo, Marta; Vallejos, Lucas Alejandro
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let n ε N. Let A1, ...Am be n×n invertible matrices. Let 0 ≤ α < n and 0 < αi < n such that α1 +...+αm = n-α . We define In [8] we obtained the boundedness of this operator from Lp(.)(Rn) into Lq(.)(Rn) for 1/q(.) = 1/p(.) - α/n, in the case that Ai is a power of certain fixed matrix A and for exponent functions p satisfying log-Hölder conditions and p(Ay) = p(y), y ε Rn. We will show now that the hypothesis on p, in certain cases, is necessary for the boundedness of Tα and we also prove the result for more general matrices Ai.
Fil: Urciuolo, Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Vallejos, Lucas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
FRACTIONAL INTEGRALS
VARIABLE EXPONENTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143432
Ver los metadatos del registro completo
id |
CONICETDig_fd4b189f4b01a978e57fb2b41780c8e5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143432 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A generalization of the boundedness of certain integral operators in variable lebesgue spacesUrciuolo, MartaVallejos, Lucas AlejandroFRACTIONAL INTEGRALSVARIABLE EXPONENTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let n ε N. Let A1, ...Am be n×n invertible matrices. Let 0 ≤ α < n and 0 < αi < n such that α1 +...+αm = n-α . We define In [8] we obtained the boundedness of this operator from Lp(.)(Rn) into Lq(.)(Rn) for 1/q(.) = 1/p(.) - α/n, in the case that Ai is a power of certain fixed matrix A and for exponent functions p satisfying log-Hölder conditions and p(Ay) = p(y), y ε Rn. We will show now that the hypothesis on p, in certain cases, is necessary for the boundedness of Tα and we also prove the result for more general matrices Ai.Fil: Urciuolo, Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Vallejos, Lucas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaElement D.O.O.2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143432Urciuolo, Marta; Vallejos, Lucas Alejandro; A generalization of the boundedness of certain integral operators in variable lebesgue spaces; Element D.O.O.; Journal of Mathematical Inequalities; 14; 2; 6-2020; 547-5571846-579XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7153/jmi-2020-14-34info:eu-repo/semantics/altIdentifier/url/http://jmi.ele-math.com/14-34/A-generalization-of-the-boundedness-of-certain-integral-operators-in-variable-Lebesgue-spacesinfo:eu-repo/semantics/altIdentifier/url/http://files.ele-math.com/abstracts/jmi-14-34-abs.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:00Zoai:ri.conicet.gov.ar:11336/143432instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:01.118CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A generalization of the boundedness of certain integral operators in variable lebesgue spaces |
title |
A generalization of the boundedness of certain integral operators in variable lebesgue spaces |
spellingShingle |
A generalization of the boundedness of certain integral operators in variable lebesgue spaces Urciuolo, Marta FRACTIONAL INTEGRALS VARIABLE EXPONENTS |
title_short |
A generalization of the boundedness of certain integral operators in variable lebesgue spaces |
title_full |
A generalization of the boundedness of certain integral operators in variable lebesgue spaces |
title_fullStr |
A generalization of the boundedness of certain integral operators in variable lebesgue spaces |
title_full_unstemmed |
A generalization of the boundedness of certain integral operators in variable lebesgue spaces |
title_sort |
A generalization of the boundedness of certain integral operators in variable lebesgue spaces |
dc.creator.none.fl_str_mv |
Urciuolo, Marta Vallejos, Lucas Alejandro |
author |
Urciuolo, Marta |
author_facet |
Urciuolo, Marta Vallejos, Lucas Alejandro |
author_role |
author |
author2 |
Vallejos, Lucas Alejandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
FRACTIONAL INTEGRALS VARIABLE EXPONENTS |
topic |
FRACTIONAL INTEGRALS VARIABLE EXPONENTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let n ε N. Let A1, ...Am be n×n invertible matrices. Let 0 ≤ α < n and 0 < αi < n such that α1 +...+αm = n-α . We define In [8] we obtained the boundedness of this operator from Lp(.)(Rn) into Lq(.)(Rn) for 1/q(.) = 1/p(.) - α/n, in the case that Ai is a power of certain fixed matrix A and for exponent functions p satisfying log-Hölder conditions and p(Ay) = p(y), y ε Rn. We will show now that the hypothesis on p, in certain cases, is necessary for the boundedness of Tα and we also prove the result for more general matrices Ai. Fil: Urciuolo, Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Vallejos, Lucas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
Let n ε N. Let A1, ...Am be n×n invertible matrices. Let 0 ≤ α < n and 0 < αi < n such that α1 +...+αm = n-α . We define In [8] we obtained the boundedness of this operator from Lp(.)(Rn) into Lq(.)(Rn) for 1/q(.) = 1/p(.) - α/n, in the case that Ai is a power of certain fixed matrix A and for exponent functions p satisfying log-Hölder conditions and p(Ay) = p(y), y ε Rn. We will show now that the hypothesis on p, in certain cases, is necessary for the boundedness of Tα and we also prove the result for more general matrices Ai. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143432 Urciuolo, Marta; Vallejos, Lucas Alejandro; A generalization of the boundedness of certain integral operators in variable lebesgue spaces; Element D.O.O.; Journal of Mathematical Inequalities; 14; 2; 6-2020; 547-557 1846-579X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143432 |
identifier_str_mv |
Urciuolo, Marta; Vallejos, Lucas Alejandro; A generalization of the boundedness of certain integral operators in variable lebesgue spaces; Element D.O.O.; Journal of Mathematical Inequalities; 14; 2; 6-2020; 547-557 1846-579X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.7153/jmi-2020-14-34 info:eu-repo/semantics/altIdentifier/url/http://jmi.ele-math.com/14-34/A-generalization-of-the-boundedness-of-certain-integral-operators-in-variable-Lebesgue-spaces info:eu-repo/semantics/altIdentifier/url/http://files.ele-math.com/abstracts/jmi-14-34-abs.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Element D.O.O. |
publisher.none.fl_str_mv |
Element D.O.O. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614356166246400 |
score |
13.070432 |