Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach

Autores
Bujía, Gastón Elián; Sclar, Melanie; Vita, Sebastián Alberto; Solovey, Guillermo; Kamienkowski, Juan Esteban
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Finding objects is essential for almost any daily-life visual task. Saliency models have been useful to predict fixation locations in natural images during a free-exploring task. However, it is still challenging to predict the sequence of fixations during visual search. Bayesian observer models are particularly suited for this task because they represent visual search as an active sampling process. Nevertheless, how they adapt to natural images remains largely unexplored. Here, we propose a unified Bayesian model for visual search guided by saliency maps as prior information. We validated our model with a visual search experiment in natural scenes. We showed that, although state-of-the-art saliency models performed well in predicting the first two fixations in a visual search task (90% of the performance achieved by humans), their performance degraded to chance afterward. Therefore, saliency maps alone could model bottom-up first impressions but they were not enough to explain scanpaths when top-down task information was critical. In contrast, our model led to human-like performance and scanpaths as revealed by: first, the agreement between targets found by the model and the humans on a trial-by-trial basis; and second, the scanpath similarity between the model and the humans, that makes the behavior of the model indistinguishable from that of humans. Altogether, the combination of deep neural networks based saliency models for image processing and a Bayesian framework for scanpath integration probes to be a powerful and flexible approach to model human behavior in natural scenarios.
Fil: Bujía, Gastón Elián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Sclar, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Vita, Sebastián Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Solovey, Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Materia
EYE MOVEMENTS
HUMAN BEHAVIOR
IDEAL OBSERVER
SALIENCY MAPS
VISUAL SEARCH
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/204478

id CONICETDig_fd0b2fcf733e62b18261083b226f871f
oai_identifier_str oai:ri.conicet.gov.ar:11336/204478
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map ApproachBujía, Gastón EliánSclar, MelanieVita, Sebastián AlbertoSolovey, GuillermoKamienkowski, Juan EstebanEYE MOVEMENTSHUMAN BEHAVIORIDEAL OBSERVERSALIENCY MAPSVISUAL SEARCHhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Finding objects is essential for almost any daily-life visual task. Saliency models have been useful to predict fixation locations in natural images during a free-exploring task. However, it is still challenging to predict the sequence of fixations during visual search. Bayesian observer models are particularly suited for this task because they represent visual search as an active sampling process. Nevertheless, how they adapt to natural images remains largely unexplored. Here, we propose a unified Bayesian model for visual search guided by saliency maps as prior information. We validated our model with a visual search experiment in natural scenes. We showed that, although state-of-the-art saliency models performed well in predicting the first two fixations in a visual search task (90% of the performance achieved by humans), their performance degraded to chance afterward. Therefore, saliency maps alone could model bottom-up first impressions but they were not enough to explain scanpaths when top-down task information was critical. In contrast, our model led to human-like performance and scanpaths as revealed by: first, the agreement between targets found by the model and the humans on a trial-by-trial basis; and second, the scanpath similarity between the model and the humans, that makes the behavior of the model indistinguishable from that of humans. Altogether, the combination of deep neural networks based saliency models for image processing and a Bayesian framework for scanpath integration probes to be a powerful and flexible approach to model human behavior in natural scenarios.Fil: Bujía, Gastón Elián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Sclar, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Vita, Sebastián Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Solovey, Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFrontiers Media2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/204478Bujía, Gastón Elián; Sclar, Melanie; Vita, Sebastián Alberto; Solovey, Guillermo; Kamienkowski, Juan Esteban; Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach; Frontiers Media; Frontiers in Systems Neuroscience; 16; 882315; 5-2022; 1-141662-5137CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnsys.2022.882315/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fnsys.2022.882315info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:24Zoai:ri.conicet.gov.ar:11336/204478instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:25.195CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach
title Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach
spellingShingle Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach
Bujía, Gastón Elián
EYE MOVEMENTS
HUMAN BEHAVIOR
IDEAL OBSERVER
SALIENCY MAPS
VISUAL SEARCH
title_short Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach
title_full Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach
title_fullStr Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach
title_full_unstemmed Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach
title_sort Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach
dc.creator.none.fl_str_mv Bujía, Gastón Elián
Sclar, Melanie
Vita, Sebastián Alberto
Solovey, Guillermo
Kamienkowski, Juan Esteban
author Bujía, Gastón Elián
author_facet Bujía, Gastón Elián
Sclar, Melanie
Vita, Sebastián Alberto
Solovey, Guillermo
Kamienkowski, Juan Esteban
author_role author
author2 Sclar, Melanie
Vita, Sebastián Alberto
Solovey, Guillermo
Kamienkowski, Juan Esteban
author2_role author
author
author
author
dc.subject.none.fl_str_mv EYE MOVEMENTS
HUMAN BEHAVIOR
IDEAL OBSERVER
SALIENCY MAPS
VISUAL SEARCH
topic EYE MOVEMENTS
HUMAN BEHAVIOR
IDEAL OBSERVER
SALIENCY MAPS
VISUAL SEARCH
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Finding objects is essential for almost any daily-life visual task. Saliency models have been useful to predict fixation locations in natural images during a free-exploring task. However, it is still challenging to predict the sequence of fixations during visual search. Bayesian observer models are particularly suited for this task because they represent visual search as an active sampling process. Nevertheless, how they adapt to natural images remains largely unexplored. Here, we propose a unified Bayesian model for visual search guided by saliency maps as prior information. We validated our model with a visual search experiment in natural scenes. We showed that, although state-of-the-art saliency models performed well in predicting the first two fixations in a visual search task (90% of the performance achieved by humans), their performance degraded to chance afterward. Therefore, saliency maps alone could model bottom-up first impressions but they were not enough to explain scanpaths when top-down task information was critical. In contrast, our model led to human-like performance and scanpaths as revealed by: first, the agreement between targets found by the model and the humans on a trial-by-trial basis; and second, the scanpath similarity between the model and the humans, that makes the behavior of the model indistinguishable from that of humans. Altogether, the combination of deep neural networks based saliency models for image processing and a Bayesian framework for scanpath integration probes to be a powerful and flexible approach to model human behavior in natural scenarios.
Fil: Bujía, Gastón Elián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Sclar, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Vita, Sebastián Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Solovey, Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
description Finding objects is essential for almost any daily-life visual task. Saliency models have been useful to predict fixation locations in natural images during a free-exploring task. However, it is still challenging to predict the sequence of fixations during visual search. Bayesian observer models are particularly suited for this task because they represent visual search as an active sampling process. Nevertheless, how they adapt to natural images remains largely unexplored. Here, we propose a unified Bayesian model for visual search guided by saliency maps as prior information. We validated our model with a visual search experiment in natural scenes. We showed that, although state-of-the-art saliency models performed well in predicting the first two fixations in a visual search task (90% of the performance achieved by humans), their performance degraded to chance afterward. Therefore, saliency maps alone could model bottom-up first impressions but they were not enough to explain scanpaths when top-down task information was critical. In contrast, our model led to human-like performance and scanpaths as revealed by: first, the agreement between targets found by the model and the humans on a trial-by-trial basis; and second, the scanpath similarity between the model and the humans, that makes the behavior of the model indistinguishable from that of humans. Altogether, the combination of deep neural networks based saliency models for image processing and a Bayesian framework for scanpath integration probes to be a powerful and flexible approach to model human behavior in natural scenarios.
publishDate 2022
dc.date.none.fl_str_mv 2022-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/204478
Bujía, Gastón Elián; Sclar, Melanie; Vita, Sebastián Alberto; Solovey, Guillermo; Kamienkowski, Juan Esteban; Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach; Frontiers Media; Frontiers in Systems Neuroscience; 16; 882315; 5-2022; 1-14
1662-5137
CONICET Digital
CONICET
url http://hdl.handle.net/11336/204478
identifier_str_mv Bujía, Gastón Elián; Sclar, Melanie; Vita, Sebastián Alberto; Solovey, Guillermo; Kamienkowski, Juan Esteban; Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach; Frontiers Media; Frontiers in Systems Neuroscience; 16; 882315; 5-2022; 1-14
1662-5137
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnsys.2022.882315/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fnsys.2022.882315
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614324551680000
score 13.070432