Integrating Bayesian and neural networks models for eye movement prediction in hybrid search

Autores
Ruarte, Gonzalo; Bujía, Gastón Elián; Care, Damian Ariel; Ison, Matias Julian; Kamienkowski, Juan Esteban
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Visual search is crucial in daily human interaction with the environment. Hybrid search extends this by requiring observers to find any item from a given set. Recently, a few models were proposed to simulate human eye movements in visual search tasks within natural scenes, but none were implemented for Hybrid search under similar conditions. We present an enhanced neural network Entropy Limit Minimization (nnELM) model, grounded in a Bayesian framework and signal detection theory, and the Hybrid Search Eye Movements (HSEM) Dataset, containing thousands of human eye movements during hybrid tasks. A key Hybrid search challenge is that participants have to look for different objects at the same time. To address this, we developed several strategies involving the posterior probability distributions after each fixation. Adjusting peripheral visibility improved early-stage efficiency, aligning it with human behavior. Limiting the model’s memory reduced success in longer searches, mirroring human performance. We validated these improvements by comparing our model with a held-out set within the HSEM and with other models in a separate visual search benchmark. Overall, the new nnELM model not only handles Hybrid search in natural scenes but also closely replicates human behavior, advancing our understanding of search processes while maintaining interpretability.
Fil: Ruarte, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Bujía, Gastón Elián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Care, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Ison, Matias Julian. University of Nottingham; Estados Unidos
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Materia
eye movements
deep neural networks
bayesian models
computational models
hybrid search
visual search
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/274513

id CONICETDig_ae12f2265f9563f8e4677b3c6a12bb1e
oai_identifier_str oai:ri.conicet.gov.ar:11336/274513
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Integrating Bayesian and neural networks models for eye movement prediction in hybrid searchRuarte, GonzaloBujía, Gastón EliánCare, Damian ArielIson, Matias JulianKamienkowski, Juan Estebaneye movementsdeep neural networksbayesian modelscomputational modelshybrid searchvisual searchhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Visual search is crucial in daily human interaction with the environment. Hybrid search extends this by requiring observers to find any item from a given set. Recently, a few models were proposed to simulate human eye movements in visual search tasks within natural scenes, but none were implemented for Hybrid search under similar conditions. We present an enhanced neural network Entropy Limit Minimization (nnELM) model, grounded in a Bayesian framework and signal detection theory, and the Hybrid Search Eye Movements (HSEM) Dataset, containing thousands of human eye movements during hybrid tasks. A key Hybrid search challenge is that participants have to look for different objects at the same time. To address this, we developed several strategies involving the posterior probability distributions after each fixation. Adjusting peripheral visibility improved early-stage efficiency, aligning it with human behavior. Limiting the model’s memory reduced success in longer searches, mirroring human performance. We validated these improvements by comparing our model with a held-out set within the HSEM and with other models in a separate visual search benchmark. Overall, the new nnELM model not only handles Hybrid search in natural scenes but also closely replicates human behavior, advancing our understanding of search processes while maintaining interpretability.Fil: Ruarte, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Bujía, Gastón Elián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Care, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Ison, Matias Julian. University of Nottingham; Estados UnidosFil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaNature2025-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274513Ruarte, Gonzalo; Bujía, Gastón Elián; Care, Damian Ariel; Ison, Matias Julian; Kamienkowski, Juan Esteban; Integrating Bayesian and neural networks models for eye movement prediction in hybrid search; Nature; Scientific Reports; 15; 1; 5-2025; 1-152045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-025-00272-3info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-025-00272-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:56:33Zoai:ri.conicet.gov.ar:11336/274513instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:56:33.882CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Integrating Bayesian and neural networks models for eye movement prediction in hybrid search
title Integrating Bayesian and neural networks models for eye movement prediction in hybrid search
spellingShingle Integrating Bayesian and neural networks models for eye movement prediction in hybrid search
Ruarte, Gonzalo
eye movements
deep neural networks
bayesian models
computational models
hybrid search
visual search
title_short Integrating Bayesian and neural networks models for eye movement prediction in hybrid search
title_full Integrating Bayesian and neural networks models for eye movement prediction in hybrid search
title_fullStr Integrating Bayesian and neural networks models for eye movement prediction in hybrid search
title_full_unstemmed Integrating Bayesian and neural networks models for eye movement prediction in hybrid search
title_sort Integrating Bayesian and neural networks models for eye movement prediction in hybrid search
dc.creator.none.fl_str_mv Ruarte, Gonzalo
Bujía, Gastón Elián
Care, Damian Ariel
Ison, Matias Julian
Kamienkowski, Juan Esteban
author Ruarte, Gonzalo
author_facet Ruarte, Gonzalo
Bujía, Gastón Elián
Care, Damian Ariel
Ison, Matias Julian
Kamienkowski, Juan Esteban
author_role author
author2 Bujía, Gastón Elián
Care, Damian Ariel
Ison, Matias Julian
Kamienkowski, Juan Esteban
author2_role author
author
author
author
dc.subject.none.fl_str_mv eye movements
deep neural networks
bayesian models
computational models
hybrid search
visual search
topic eye movements
deep neural networks
bayesian models
computational models
hybrid search
visual search
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Visual search is crucial in daily human interaction with the environment. Hybrid search extends this by requiring observers to find any item from a given set. Recently, a few models were proposed to simulate human eye movements in visual search tasks within natural scenes, but none were implemented for Hybrid search under similar conditions. We present an enhanced neural network Entropy Limit Minimization (nnELM) model, grounded in a Bayesian framework and signal detection theory, and the Hybrid Search Eye Movements (HSEM) Dataset, containing thousands of human eye movements during hybrid tasks. A key Hybrid search challenge is that participants have to look for different objects at the same time. To address this, we developed several strategies involving the posterior probability distributions after each fixation. Adjusting peripheral visibility improved early-stage efficiency, aligning it with human behavior. Limiting the model’s memory reduced success in longer searches, mirroring human performance. We validated these improvements by comparing our model with a held-out set within the HSEM and with other models in a separate visual search benchmark. Overall, the new nnELM model not only handles Hybrid search in natural scenes but also closely replicates human behavior, advancing our understanding of search processes while maintaining interpretability.
Fil: Ruarte, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Bujía, Gastón Elián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Care, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Ison, Matias Julian. University of Nottingham; Estados Unidos
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
description Visual search is crucial in daily human interaction with the environment. Hybrid search extends this by requiring observers to find any item from a given set. Recently, a few models were proposed to simulate human eye movements in visual search tasks within natural scenes, but none were implemented for Hybrid search under similar conditions. We present an enhanced neural network Entropy Limit Minimization (nnELM) model, grounded in a Bayesian framework and signal detection theory, and the Hybrid Search Eye Movements (HSEM) Dataset, containing thousands of human eye movements during hybrid tasks. A key Hybrid search challenge is that participants have to look for different objects at the same time. To address this, we developed several strategies involving the posterior probability distributions after each fixation. Adjusting peripheral visibility improved early-stage efficiency, aligning it with human behavior. Limiting the model’s memory reduced success in longer searches, mirroring human performance. We validated these improvements by comparing our model with a held-out set within the HSEM and with other models in a separate visual search benchmark. Overall, the new nnELM model not only handles Hybrid search in natural scenes but also closely replicates human behavior, advancing our understanding of search processes while maintaining interpretability.
publishDate 2025
dc.date.none.fl_str_mv 2025-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/274513
Ruarte, Gonzalo; Bujía, Gastón Elián; Care, Damian Ariel; Ison, Matias Julian; Kamienkowski, Juan Esteban; Integrating Bayesian and neural networks models for eye movement prediction in hybrid search; Nature; Scientific Reports; 15; 1; 5-2025; 1-15
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/274513
identifier_str_mv Ruarte, Gonzalo; Bujía, Gastón Elián; Care, Damian Ariel; Ison, Matias Julian; Kamienkowski, Juan Esteban; Integrating Bayesian and neural networks models for eye movement prediction in hybrid search; Nature; Scientific Reports; 15; 1; 5-2025; 1-15
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-025-00272-3
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-025-00272-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848598336842498048
score 12.976206