Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study

Autores
Dziemian, Sabine; Bujía, Gastón Elián; Prasse, Paul; Barańczuk Turska, Zofia; Jäger, Lena A.; Kamienkowski, Juan Esteban; Langer, Nicolas
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Objective: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder. It is associated with deficits in executive functions, especially invisual attention. Deviant visual attention in ADHD is suspected to arise from imbalancesbetween top-down and bottom-up mechanisms. However, it is unclear which of thesemechanisms propels the aberrant visual attention.Method: Here, we investigated differences in visual attention in ADHD and neurotypical controls(NC) using eye-tracking in a naturalistic video viewing task in 815 medication-naï ve children andadolescents (age range 5–21 years). We used two opposing saliency models: Finegrained, basedon low-level image features, was chosen to estimate bottom-up visually relevant areas. ViNet, ahigher-level saliency model based on deep neural networks and trained on the gaze of NCparticipants, was selected to determine top-down visually relevant regions. Correspondencebetween gaze and both saliency maps was calculated using normalized scanpath saliency (NSS),thus measuring the extent of coherence to bottom-up and top-down relevant contents.Results: Individuals with the combined presentation of ADHD (ADHD-C) showed lower meanNSS for the top-down saliency map, but not the bottom-up one, compared to NC. This contrastindicates poorer top-down control as a major contributor to impaired visual attention in ADHD-C.There was no significant effect for the ADHD predominantly inattentive presentation group.Conclusion: This study demonstrated the use of eye-tracking for differentiating between top-downand bottom-up visual attention. It shows that in ADHD-C, a reduction of top-down visual attentionis key to an impaired competition between bottom-up and top-down visual attention.
Fil: Dziemian, Sabine. Universitat Zurich; Suiza
Fil: Bujía, Gastón Elián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Prasse, Paul. Universitat Potsdam; Alemania
Fil: Barańczuk Turska, Zofia. Universitat Zurich; Suiza
Fil: Jäger, Lena A.. Universitat Potsdam; Alemania
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Langer, Nicolas. Universitat Zurich; Suiza
Materia
ADHD
eye-tracking
visual attention
saliency models
naturalistic task-free viewing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/258745

id CONICETDig_f7f2fa1264bf5b833ec41e8d02717e65
oai_identifier_str oai:ri.conicet.gov.ar:11336/258745
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking StudyDziemian, SabineBujía, Gastón EliánPrasse, PaulBarańczuk Turska, ZofiaJäger, Lena A.Kamienkowski, Juan EstebanLanger, NicolasADHDeye-trackingvisual attentionsaliency modelsnaturalistic task-free viewinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Objective: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder. It is associated with deficits in executive functions, especially invisual attention. Deviant visual attention in ADHD is suspected to arise from imbalancesbetween top-down and bottom-up mechanisms. However, it is unclear which of thesemechanisms propels the aberrant visual attention.Method: Here, we investigated differences in visual attention in ADHD and neurotypical controls(NC) using eye-tracking in a naturalistic video viewing task in 815 medication-naï ve children andadolescents (age range 5–21 years). We used two opposing saliency models: Finegrained, basedon low-level image features, was chosen to estimate bottom-up visually relevant areas. ViNet, ahigher-level saliency model based on deep neural networks and trained on the gaze of NCparticipants, was selected to determine top-down visually relevant regions. Correspondencebetween gaze and both saliency maps was calculated using normalized scanpath saliency (NSS),thus measuring the extent of coherence to bottom-up and top-down relevant contents.Results: Individuals with the combined presentation of ADHD (ADHD-C) showed lower meanNSS for the top-down saliency map, but not the bottom-up one, compared to NC. This contrastindicates poorer top-down control as a major contributor to impaired visual attention in ADHD-C.There was no significant effect for the ADHD predominantly inattentive presentation group.Conclusion: This study demonstrated the use of eye-tracking for differentiating between top-downand bottom-up visual attention. It shows that in ADHD-C, a reduction of top-down visual attentionis key to an impaired competition between bottom-up and top-down visual attention.Fil: Dziemian, Sabine. Universitat Zurich; SuizaFil: Bujía, Gastón Elián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Prasse, Paul. Universitat Potsdam; AlemaniaFil: Barańczuk Turska, Zofia. Universitat Zurich; SuizaFil: Jäger, Lena A.. Universitat Potsdam; AlemaniaFil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Langer, Nicolas. Universitat Zurich; SuizaElsevier2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258745Dziemian, Sabine; Bujía, Gastón Elián; Prasse, Paul; Barańczuk Turska, Zofia; Jäger, Lena A.; et al.; Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study; Elsevier; JAACAP Open; 4-2024; 1-422949-7329CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2949732924000280info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jaacop.2024.03.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:19Zoai:ri.conicet.gov.ar:11336/258745instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:20.098CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study
title Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study
spellingShingle Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study
Dziemian, Sabine
ADHD
eye-tracking
visual attention
saliency models
naturalistic task-free viewing
title_short Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study
title_full Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study
title_fullStr Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study
title_full_unstemmed Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study
title_sort Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study
dc.creator.none.fl_str_mv Dziemian, Sabine
Bujía, Gastón Elián
Prasse, Paul
Barańczuk Turska, Zofia
Jäger, Lena A.
Kamienkowski, Juan Esteban
Langer, Nicolas
author Dziemian, Sabine
author_facet Dziemian, Sabine
Bujía, Gastón Elián
Prasse, Paul
Barańczuk Turska, Zofia
Jäger, Lena A.
Kamienkowski, Juan Esteban
Langer, Nicolas
author_role author
author2 Bujía, Gastón Elián
Prasse, Paul
Barańczuk Turska, Zofia
Jäger, Lena A.
Kamienkowski, Juan Esteban
Langer, Nicolas
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv ADHD
eye-tracking
visual attention
saliency models
naturalistic task-free viewing
topic ADHD
eye-tracking
visual attention
saliency models
naturalistic task-free viewing
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Objective: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder. It is associated with deficits in executive functions, especially invisual attention. Deviant visual attention in ADHD is suspected to arise from imbalancesbetween top-down and bottom-up mechanisms. However, it is unclear which of thesemechanisms propels the aberrant visual attention.Method: Here, we investigated differences in visual attention in ADHD and neurotypical controls(NC) using eye-tracking in a naturalistic video viewing task in 815 medication-naï ve children andadolescents (age range 5–21 years). We used two opposing saliency models: Finegrained, basedon low-level image features, was chosen to estimate bottom-up visually relevant areas. ViNet, ahigher-level saliency model based on deep neural networks and trained on the gaze of NCparticipants, was selected to determine top-down visually relevant regions. Correspondencebetween gaze and both saliency maps was calculated using normalized scanpath saliency (NSS),thus measuring the extent of coherence to bottom-up and top-down relevant contents.Results: Individuals with the combined presentation of ADHD (ADHD-C) showed lower meanNSS for the top-down saliency map, but not the bottom-up one, compared to NC. This contrastindicates poorer top-down control as a major contributor to impaired visual attention in ADHD-C.There was no significant effect for the ADHD predominantly inattentive presentation group.Conclusion: This study demonstrated the use of eye-tracking for differentiating between top-downand bottom-up visual attention. It shows that in ADHD-C, a reduction of top-down visual attentionis key to an impaired competition between bottom-up and top-down visual attention.
Fil: Dziemian, Sabine. Universitat Zurich; Suiza
Fil: Bujía, Gastón Elián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Prasse, Paul. Universitat Potsdam; Alemania
Fil: Barańczuk Turska, Zofia. Universitat Zurich; Suiza
Fil: Jäger, Lena A.. Universitat Potsdam; Alemania
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Langer, Nicolas. Universitat Zurich; Suiza
description Objective: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder. It is associated with deficits in executive functions, especially invisual attention. Deviant visual attention in ADHD is suspected to arise from imbalancesbetween top-down and bottom-up mechanisms. However, it is unclear which of thesemechanisms propels the aberrant visual attention.Method: Here, we investigated differences in visual attention in ADHD and neurotypical controls(NC) using eye-tracking in a naturalistic video viewing task in 815 medication-naï ve children andadolescents (age range 5–21 years). We used two opposing saliency models: Finegrained, basedon low-level image features, was chosen to estimate bottom-up visually relevant areas. ViNet, ahigher-level saliency model based on deep neural networks and trained on the gaze of NCparticipants, was selected to determine top-down visually relevant regions. Correspondencebetween gaze and both saliency maps was calculated using normalized scanpath saliency (NSS),thus measuring the extent of coherence to bottom-up and top-down relevant contents.Results: Individuals with the combined presentation of ADHD (ADHD-C) showed lower meanNSS for the top-down saliency map, but not the bottom-up one, compared to NC. This contrastindicates poorer top-down control as a major contributor to impaired visual attention in ADHD-C.There was no significant effect for the ADHD predominantly inattentive presentation group.Conclusion: This study demonstrated the use of eye-tracking for differentiating between top-downand bottom-up visual attention. It shows that in ADHD-C, a reduction of top-down visual attentionis key to an impaired competition between bottom-up and top-down visual attention.
publishDate 2024
dc.date.none.fl_str_mv 2024-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/258745
Dziemian, Sabine; Bujía, Gastón Elián; Prasse, Paul; Barańczuk Turska, Zofia; Jäger, Lena A.; et al.; Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study; Elsevier; JAACAP Open; 4-2024; 1-42
2949-7329
CONICET Digital
CONICET
url http://hdl.handle.net/11336/258745
identifier_str_mv Dziemian, Sabine; Bujía, Gastón Elián; Prasse, Paul; Barańczuk Turska, Zofia; Jäger, Lena A.; et al.; Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study; Elsevier; JAACAP Open; 4-2024; 1-42
2949-7329
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2949732924000280
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jaacop.2024.03.001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269217171177472
score 13.13397