Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study
- Autores
- Dziemian, Sabine; Bujía, Gastón Elián; Prasse, Paul; Barańczuk Turska, Zofia; Jäger, Lena A.; Kamienkowski, Juan Esteban; Langer, Nicolas
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Objective: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder. It is associated with deficits in executive functions, especially invisual attention. Deviant visual attention in ADHD is suspected to arise from imbalancesbetween top-down and bottom-up mechanisms. However, it is unclear which of thesemechanisms propels the aberrant visual attention.Method: Here, we investigated differences in visual attention in ADHD and neurotypical controls(NC) using eye-tracking in a naturalistic video viewing task in 815 medication-naï ve children andadolescents (age range 5–21 years). We used two opposing saliency models: Finegrained, basedon low-level image features, was chosen to estimate bottom-up visually relevant areas. ViNet, ahigher-level saliency model based on deep neural networks and trained on the gaze of NCparticipants, was selected to determine top-down visually relevant regions. Correspondencebetween gaze and both saliency maps was calculated using normalized scanpath saliency (NSS),thus measuring the extent of coherence to bottom-up and top-down relevant contents.Results: Individuals with the combined presentation of ADHD (ADHD-C) showed lower meanNSS for the top-down saliency map, but not the bottom-up one, compared to NC. This contrastindicates poorer top-down control as a major contributor to impaired visual attention in ADHD-C.There was no significant effect for the ADHD predominantly inattentive presentation group.Conclusion: This study demonstrated the use of eye-tracking for differentiating between top-downand bottom-up visual attention. It shows that in ADHD-C, a reduction of top-down visual attentionis key to an impaired competition between bottom-up and top-down visual attention.
Fil: Dziemian, Sabine. Universitat Zurich; Suiza
Fil: Bujía, Gastón Elián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Prasse, Paul. Universitat Potsdam; Alemania
Fil: Barańczuk Turska, Zofia. Universitat Zurich; Suiza
Fil: Jäger, Lena A.. Universitat Potsdam; Alemania
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Langer, Nicolas. Universitat Zurich; Suiza - Materia
-
ADHD
eye-tracking
visual attention
saliency models
naturalistic task-free viewing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/258745
Ver los metadatos del registro completo
| id |
CONICETDig_f7f2fa1264bf5b833ec41e8d02717e65 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/258745 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking StudyDziemian, SabineBujía, Gastón EliánPrasse, PaulBarańczuk Turska, ZofiaJäger, Lena A.Kamienkowski, Juan EstebanLanger, NicolasADHDeye-trackingvisual attentionsaliency modelsnaturalistic task-free viewinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Objective: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder. It is associated with deficits in executive functions, especially invisual attention. Deviant visual attention in ADHD is suspected to arise from imbalancesbetween top-down and bottom-up mechanisms. However, it is unclear which of thesemechanisms propels the aberrant visual attention.Method: Here, we investigated differences in visual attention in ADHD and neurotypical controls(NC) using eye-tracking in a naturalistic video viewing task in 815 medication-naï ve children andadolescents (age range 5–21 years). We used two opposing saliency models: Finegrained, basedon low-level image features, was chosen to estimate bottom-up visually relevant areas. ViNet, ahigher-level saliency model based on deep neural networks and trained on the gaze of NCparticipants, was selected to determine top-down visually relevant regions. Correspondencebetween gaze and both saliency maps was calculated using normalized scanpath saliency (NSS),thus measuring the extent of coherence to bottom-up and top-down relevant contents.Results: Individuals with the combined presentation of ADHD (ADHD-C) showed lower meanNSS for the top-down saliency map, but not the bottom-up one, compared to NC. This contrastindicates poorer top-down control as a major contributor to impaired visual attention in ADHD-C.There was no significant effect for the ADHD predominantly inattentive presentation group.Conclusion: This study demonstrated the use of eye-tracking for differentiating between top-downand bottom-up visual attention. It shows that in ADHD-C, a reduction of top-down visual attentionis key to an impaired competition between bottom-up and top-down visual attention.Fil: Dziemian, Sabine. Universitat Zurich; SuizaFil: Bujía, Gastón Elián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Prasse, Paul. Universitat Potsdam; AlemaniaFil: Barańczuk Turska, Zofia. Universitat Zurich; SuizaFil: Jäger, Lena A.. Universitat Potsdam; AlemaniaFil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Langer, Nicolas. Universitat Zurich; SuizaElsevier2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258745Dziemian, Sabine; Bujía, Gastón Elián; Prasse, Paul; Barańczuk Turska, Zofia; Jäger, Lena A.; et al.; Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study; Elsevier; JAACAP Open; 4-2024; 1-422949-7329CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2949732924000280info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jaacop.2024.03.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:54:57Zoai:ri.conicet.gov.ar:11336/258745instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:54:57.952CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study |
| title |
Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study |
| spellingShingle |
Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study Dziemian, Sabine ADHD eye-tracking visual attention saliency models naturalistic task-free viewing |
| title_short |
Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study |
| title_full |
Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study |
| title_fullStr |
Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study |
| title_full_unstemmed |
Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study |
| title_sort |
Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study |
| dc.creator.none.fl_str_mv |
Dziemian, Sabine Bujía, Gastón Elián Prasse, Paul Barańczuk Turska, Zofia Jäger, Lena A. Kamienkowski, Juan Esteban Langer, Nicolas |
| author |
Dziemian, Sabine |
| author_facet |
Dziemian, Sabine Bujía, Gastón Elián Prasse, Paul Barańczuk Turska, Zofia Jäger, Lena A. Kamienkowski, Juan Esteban Langer, Nicolas |
| author_role |
author |
| author2 |
Bujía, Gastón Elián Prasse, Paul Barańczuk Turska, Zofia Jäger, Lena A. Kamienkowski, Juan Esteban Langer, Nicolas |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
ADHD eye-tracking visual attention saliency models naturalistic task-free viewing |
| topic |
ADHD eye-tracking visual attention saliency models naturalistic task-free viewing |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Objective: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder. It is associated with deficits in executive functions, especially invisual attention. Deviant visual attention in ADHD is suspected to arise from imbalancesbetween top-down and bottom-up mechanisms. However, it is unclear which of thesemechanisms propels the aberrant visual attention.Method: Here, we investigated differences in visual attention in ADHD and neurotypical controls(NC) using eye-tracking in a naturalistic video viewing task in 815 medication-naï ve children andadolescents (age range 5–21 years). We used two opposing saliency models: Finegrained, basedon low-level image features, was chosen to estimate bottom-up visually relevant areas. ViNet, ahigher-level saliency model based on deep neural networks and trained on the gaze of NCparticipants, was selected to determine top-down visually relevant regions. Correspondencebetween gaze and both saliency maps was calculated using normalized scanpath saliency (NSS),thus measuring the extent of coherence to bottom-up and top-down relevant contents.Results: Individuals with the combined presentation of ADHD (ADHD-C) showed lower meanNSS for the top-down saliency map, but not the bottom-up one, compared to NC. This contrastindicates poorer top-down control as a major contributor to impaired visual attention in ADHD-C.There was no significant effect for the ADHD predominantly inattentive presentation group.Conclusion: This study demonstrated the use of eye-tracking for differentiating between top-downand bottom-up visual attention. It shows that in ADHD-C, a reduction of top-down visual attentionis key to an impaired competition between bottom-up and top-down visual attention. Fil: Dziemian, Sabine. Universitat Zurich; Suiza Fil: Bujía, Gastón Elián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Prasse, Paul. Universitat Potsdam; Alemania Fil: Barańczuk Turska, Zofia. Universitat Zurich; Suiza Fil: Jäger, Lena A.. Universitat Potsdam; Alemania Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Langer, Nicolas. Universitat Zurich; Suiza |
| description |
Objective: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder. It is associated with deficits in executive functions, especially invisual attention. Deviant visual attention in ADHD is suspected to arise from imbalancesbetween top-down and bottom-up mechanisms. However, it is unclear which of thesemechanisms propels the aberrant visual attention.Method: Here, we investigated differences in visual attention in ADHD and neurotypical controls(NC) using eye-tracking in a naturalistic video viewing task in 815 medication-naï ve children andadolescents (age range 5–21 years). We used two opposing saliency models: Finegrained, basedon low-level image features, was chosen to estimate bottom-up visually relevant areas. ViNet, ahigher-level saliency model based on deep neural networks and trained on the gaze of NCparticipants, was selected to determine top-down visually relevant regions. Correspondencebetween gaze and both saliency maps was calculated using normalized scanpath saliency (NSS),thus measuring the extent of coherence to bottom-up and top-down relevant contents.Results: Individuals with the combined presentation of ADHD (ADHD-C) showed lower meanNSS for the top-down saliency map, but not the bottom-up one, compared to NC. This contrastindicates poorer top-down control as a major contributor to impaired visual attention in ADHD-C.There was no significant effect for the ADHD predominantly inattentive presentation group.Conclusion: This study demonstrated the use of eye-tracking for differentiating between top-downand bottom-up visual attention. It shows that in ADHD-C, a reduction of top-down visual attentionis key to an impaired competition between bottom-up and top-down visual attention. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/258745 Dziemian, Sabine; Bujía, Gastón Elián; Prasse, Paul; Barańczuk Turska, Zofia; Jäger, Lena A.; et al.; Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study; Elsevier; JAACAP Open; 4-2024; 1-42 2949-7329 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/258745 |
| identifier_str_mv |
Dziemian, Sabine; Bujía, Gastón Elián; Prasse, Paul; Barańczuk Turska, Zofia; Jäger, Lena A.; et al.; Saliency Models Reveal Reduced Top-Down Attention in Attention-Deficit/Hyperactivity Disorder: A Naturalistic Eye-Tracking Study; Elsevier; JAACAP Open; 4-2024; 1-42 2949-7329 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2949732924000280 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jaacop.2024.03.001 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977316374806528 |
| score |
13.087074 |