An extrapolation theorem with applications to weighted estimates for singular integrals
- Autores
- Lerner, Andrei K.; Ombrosi, Sheldy Javier
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove an extrapolation theorem saying that the weighted weak type (1; 1) inequality for A1 weights implies the strong Lp(w) bound in terms of the Lp(w) operator norm of the maximal operator M. The weak Muchkenhoupt-Wheeden conjecture along with this result allows us to conjecture that the following estimate holds for a Calder´on-Zygmund operator T for any p > 1: ∥T∥ Lp(w) ≤ c∥M∥p Lp(w): The latter conjecture would yield the sharp estimates for ∥T∥ Lp(w) in terms of the Aq characteristic of w for any 1 < q < p. In this paper we get a weaker inequality ∥T∥ Lp(w) ≤ c∥M∥p Lp(w) log(1 + ∥M∥ Lp(w)) with the corresponding estimates for ∥w∥Aq when 1 < q < p.
Fil: Lerner, Andrei K.. Bar Ilan University; Israel
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
Extrapolation
Integrals
Weights - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/66250
Ver los metadatos del registro completo
id |
CONICETDig_fd05a3171882629389d762655b609313 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/66250 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An extrapolation theorem with applications to weighted estimates for singular integralsLerner, Andrei K.Ombrosi, Sheldy JavierExtrapolationIntegralsWeightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove an extrapolation theorem saying that the weighted weak type (1; 1) inequality for A1 weights implies the strong Lp(w) bound in terms of the Lp(w) operator norm of the maximal operator M. The weak Muchkenhoupt-Wheeden conjecture along with this result allows us to conjecture that the following estimate holds for a Calder´on-Zygmund operator T for any p > 1: ∥T∥ Lp(w) ≤ c∥M∥p Lp(w): The latter conjecture would yield the sharp estimates for ∥T∥ Lp(w) in terms of the Aq characteristic of w for any 1 < q < p. In this paper we get a weaker inequality ∥T∥ Lp(w) ≤ c∥M∥p Lp(w) log(1 + ∥M∥ Lp(w)) with the corresponding estimates for ∥w∥Aq when 1 < q < p.Fil: Lerner, Andrei K.. Bar Ilan University; IsraelFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAcademic Press Inc Elsevier Science2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66250Lerner, Andrei K.; Ombrosi, Sheldy Javier; An extrapolation theorem with applications to weighted estimates for singular integrals; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 10; 5-2012; 4475-44870022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123612001000info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2012.02.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:09Zoai:ri.conicet.gov.ar:11336/66250instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:09.821CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An extrapolation theorem with applications to weighted estimates for singular integrals |
title |
An extrapolation theorem with applications to weighted estimates for singular integrals |
spellingShingle |
An extrapolation theorem with applications to weighted estimates for singular integrals Lerner, Andrei K. Extrapolation Integrals Weights |
title_short |
An extrapolation theorem with applications to weighted estimates for singular integrals |
title_full |
An extrapolation theorem with applications to weighted estimates for singular integrals |
title_fullStr |
An extrapolation theorem with applications to weighted estimates for singular integrals |
title_full_unstemmed |
An extrapolation theorem with applications to weighted estimates for singular integrals |
title_sort |
An extrapolation theorem with applications to weighted estimates for singular integrals |
dc.creator.none.fl_str_mv |
Lerner, Andrei K. Ombrosi, Sheldy Javier |
author |
Lerner, Andrei K. |
author_facet |
Lerner, Andrei K. Ombrosi, Sheldy Javier |
author_role |
author |
author2 |
Ombrosi, Sheldy Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Extrapolation Integrals Weights |
topic |
Extrapolation Integrals Weights |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove an extrapolation theorem saying that the weighted weak type (1; 1) inequality for A1 weights implies the strong Lp(w) bound in terms of the Lp(w) operator norm of the maximal operator M. The weak Muchkenhoupt-Wheeden conjecture along with this result allows us to conjecture that the following estimate holds for a Calder´on-Zygmund operator T for any p > 1: ∥T∥ Lp(w) ≤ c∥M∥p Lp(w): The latter conjecture would yield the sharp estimates for ∥T∥ Lp(w) in terms of the Aq characteristic of w for any 1 < q < p. In this paper we get a weaker inequality ∥T∥ Lp(w) ≤ c∥M∥p Lp(w) log(1 + ∥M∥ Lp(w)) with the corresponding estimates for ∥w∥Aq when 1 < q < p. Fil: Lerner, Andrei K.. Bar Ilan University; Israel Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
We prove an extrapolation theorem saying that the weighted weak type (1; 1) inequality for A1 weights implies the strong Lp(w) bound in terms of the Lp(w) operator norm of the maximal operator M. The weak Muchkenhoupt-Wheeden conjecture along with this result allows us to conjecture that the following estimate holds for a Calder´on-Zygmund operator T for any p > 1: ∥T∥ Lp(w) ≤ c∥M∥p Lp(w): The latter conjecture would yield the sharp estimates for ∥T∥ Lp(w) in terms of the Aq characteristic of w for any 1 < q < p. In this paper we get a weaker inequality ∥T∥ Lp(w) ≤ c∥M∥p Lp(w) log(1 + ∥M∥ Lp(w)) with the corresponding estimates for ∥w∥Aq when 1 < q < p. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/66250 Lerner, Andrei K.; Ombrosi, Sheldy Javier; An extrapolation theorem with applications to weighted estimates for singular integrals; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 10; 5-2012; 4475-4487 0022-1236 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/66250 |
identifier_str_mv |
Lerner, Andrei K.; Ombrosi, Sheldy Javier; An extrapolation theorem with applications to weighted estimates for singular integrals; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 10; 5-2012; 4475-4487 0022-1236 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123612001000 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2012.02.025 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269387494522880 |
score |
13.13397 |