An extrapolation theorem with applications to weighted estimates for singular integrals
- Autores
- Lerner, Andrei K.; Ombrosi, Sheldy Javier
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove an extrapolation theorem saying that the weighted weak type (1; 1) inequality for A1 weights implies the strong Lp(w) bound in terms of the Lp(w) operator norm of the maximal operator M. The weak Muchkenhoupt-Wheeden conjecture along with this result allows us to conjecture that the following estimate holds for a Calder´on-Zygmund operator T for any p > 1: ∥T∥ Lp(w) ≤ c∥M∥p Lp(w): The latter conjecture would yield the sharp estimates for ∥T∥ Lp(w) in terms of the Aq characteristic of w for any 1 < q < p. In this paper we get a weaker inequality ∥T∥ Lp(w) ≤ c∥M∥p Lp(w) log(1 + ∥M∥ Lp(w)) with the corresponding estimates for ∥w∥Aq when 1 < q < p.
Fil: Lerner, Andrei K.. Bar Ilan University; Israel
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
Extrapolation
Integrals
Weights - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/66250
Ver los metadatos del registro completo
| id |
CONICETDig_fd05a3171882629389d762655b609313 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/66250 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
An extrapolation theorem with applications to weighted estimates for singular integralsLerner, Andrei K.Ombrosi, Sheldy JavierExtrapolationIntegralsWeightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove an extrapolation theorem saying that the weighted weak type (1; 1) inequality for A1 weights implies the strong Lp(w) bound in terms of the Lp(w) operator norm of the maximal operator M. The weak Muchkenhoupt-Wheeden conjecture along with this result allows us to conjecture that the following estimate holds for a Calder´on-Zygmund operator T for any p > 1: ∥T∥ Lp(w) ≤ c∥M∥p Lp(w): The latter conjecture would yield the sharp estimates for ∥T∥ Lp(w) in terms of the Aq characteristic of w for any 1 < q < p. In this paper we get a weaker inequality ∥T∥ Lp(w) ≤ c∥M∥p Lp(w) log(1 + ∥M∥ Lp(w)) with the corresponding estimates for ∥w∥Aq when 1 < q < p.Fil: Lerner, Andrei K.. Bar Ilan University; IsraelFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAcademic Press Inc Elsevier Science2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66250Lerner, Andrei K.; Ombrosi, Sheldy Javier; An extrapolation theorem with applications to weighted estimates for singular integrals; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 10; 5-2012; 4475-44870022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123612001000info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2012.02.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:02:28Zoai:ri.conicet.gov.ar:11336/66250instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:02:28.747CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
An extrapolation theorem with applications to weighted estimates for singular integrals |
| title |
An extrapolation theorem with applications to weighted estimates for singular integrals |
| spellingShingle |
An extrapolation theorem with applications to weighted estimates for singular integrals Lerner, Andrei K. Extrapolation Integrals Weights |
| title_short |
An extrapolation theorem with applications to weighted estimates for singular integrals |
| title_full |
An extrapolation theorem with applications to weighted estimates for singular integrals |
| title_fullStr |
An extrapolation theorem with applications to weighted estimates for singular integrals |
| title_full_unstemmed |
An extrapolation theorem with applications to weighted estimates for singular integrals |
| title_sort |
An extrapolation theorem with applications to weighted estimates for singular integrals |
| dc.creator.none.fl_str_mv |
Lerner, Andrei K. Ombrosi, Sheldy Javier |
| author |
Lerner, Andrei K. |
| author_facet |
Lerner, Andrei K. Ombrosi, Sheldy Javier |
| author_role |
author |
| author2 |
Ombrosi, Sheldy Javier |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Extrapolation Integrals Weights |
| topic |
Extrapolation Integrals Weights |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We prove an extrapolation theorem saying that the weighted weak type (1; 1) inequality for A1 weights implies the strong Lp(w) bound in terms of the Lp(w) operator norm of the maximal operator M. The weak Muchkenhoupt-Wheeden conjecture along with this result allows us to conjecture that the following estimate holds for a Calder´on-Zygmund operator T for any p > 1: ∥T∥ Lp(w) ≤ c∥M∥p Lp(w): The latter conjecture would yield the sharp estimates for ∥T∥ Lp(w) in terms of the Aq characteristic of w for any 1 < q < p. In this paper we get a weaker inequality ∥T∥ Lp(w) ≤ c∥M∥p Lp(w) log(1 + ∥M∥ Lp(w)) with the corresponding estimates for ∥w∥Aq when 1 < q < p. Fil: Lerner, Andrei K.. Bar Ilan University; Israel Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
| description |
We prove an extrapolation theorem saying that the weighted weak type (1; 1) inequality for A1 weights implies the strong Lp(w) bound in terms of the Lp(w) operator norm of the maximal operator M. The weak Muchkenhoupt-Wheeden conjecture along with this result allows us to conjecture that the following estimate holds for a Calder´on-Zygmund operator T for any p > 1: ∥T∥ Lp(w) ≤ c∥M∥p Lp(w): The latter conjecture would yield the sharp estimates for ∥T∥ Lp(w) in terms of the Aq characteristic of w for any 1 < q < p. In this paper we get a weaker inequality ∥T∥ Lp(w) ≤ c∥M∥p Lp(w) log(1 + ∥M∥ Lp(w)) with the corresponding estimates for ∥w∥Aq when 1 < q < p. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/66250 Lerner, Andrei K.; Ombrosi, Sheldy Javier; An extrapolation theorem with applications to weighted estimates for singular integrals; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 10; 5-2012; 4475-4487 0022-1236 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/66250 |
| identifier_str_mv |
Lerner, Andrei K.; Ombrosi, Sheldy Javier; An extrapolation theorem with applications to weighted estimates for singular integrals; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 10; 5-2012; 4475-4487 0022-1236 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123612001000 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2012.02.025 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977480749580288 |
| score |
13.087074 |