Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals

Autores
Riveros, Maria Silvina; Vidal, Raúl Emilio
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we obtain for $T^+$, a one-sided singular integral given by a Calder´on-Zygmund kernel with support in $(-infty,0)$, a $L^p(w)$ bound when $win A_1^+$. A. K. Lerner, S. Ombrosi, and C. Pérez in ``$A_{1}$ Bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. extbf{16} no. 1, (2009), 149-156" proved that this bound is sharp with respect to $||w||_{A_1} $ and with respect to $p$ . We also give a $L^{1,infty}(w)$ estimate, for a related problem of Muckenhoupt and Wheeden for $win A_1^+$ . We improve the classical results, for one-sided singular integrals, by putting in the inequalities a wider class of weights.
Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
One-sided singular integrals
Sawyer weights
Weighted norm inequalities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/51845

id CONICETDig_339ccdd17bd3827e50561513dc899d67
oai_identifier_str oai:ri.conicet.gov.ar:11336/51845
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integralsRiveros, Maria SilvinaVidal, Raúl EmilioOne-sided singular integralsSawyer weightsWeighted norm inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we obtain for $T^+$, a one-sided singular integral given by a Calder´on-Zygmund kernel with support in $(-infty,0)$, a $L^p(w)$ bound when $win A_1^+$. A. K. Lerner, S. Ombrosi, and C. Pérez in ``$A_{1}$ Bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. extbf{16} no. 1, (2009), 149-156" proved that this bound is sharp with respect to $||w||_{A_1} $ and with respect to $p$ . We also give a $L^{1,infty}(w)$ estimate, for a related problem of Muckenhoupt and Wheeden for $win A_1^+$ . We improve the classical results, for one-sided singular integrals, by putting in the inequalities a wider class of weights.Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElement2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/51845Riveros, Maria Silvina; Vidal, Raúl Emilio; Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals; Element; Mathematical Inequalities & Applications; 8; 3; 7-2015; 1087-11091331-4343CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.7153/mia-18-84info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:39Zoai:ri.conicet.gov.ar:11336/51845instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:39.78CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals
title Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals
spellingShingle Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals
Riveros, Maria Silvina
One-sided singular integrals
Sawyer weights
Weighted norm inequalities
title_short Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals
title_full Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals
title_fullStr Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals
title_full_unstemmed Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals
title_sort Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals
dc.creator.none.fl_str_mv Riveros, Maria Silvina
Vidal, Raúl Emilio
author Riveros, Maria Silvina
author_facet Riveros, Maria Silvina
Vidal, Raúl Emilio
author_role author
author2 Vidal, Raúl Emilio
author2_role author
dc.subject.none.fl_str_mv One-sided singular integrals
Sawyer weights
Weighted norm inequalities
topic One-sided singular integrals
Sawyer weights
Weighted norm inequalities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we obtain for $T^+$, a one-sided singular integral given by a Calder´on-Zygmund kernel with support in $(-infty,0)$, a $L^p(w)$ bound when $win A_1^+$. A. K. Lerner, S. Ombrosi, and C. Pérez in ``$A_{1}$ Bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. extbf{16} no. 1, (2009), 149-156" proved that this bound is sharp with respect to $||w||_{A_1} $ and with respect to $p$ . We also give a $L^{1,infty}(w)$ estimate, for a related problem of Muckenhoupt and Wheeden for $win A_1^+$ . We improve the classical results, for one-sided singular integrals, by putting in the inequalities a wider class of weights.
Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description In this paper we obtain for $T^+$, a one-sided singular integral given by a Calder´on-Zygmund kernel with support in $(-infty,0)$, a $L^p(w)$ bound when $win A_1^+$. A. K. Lerner, S. Ombrosi, and C. Pérez in ``$A_{1}$ Bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. extbf{16} no. 1, (2009), 149-156" proved that this bound is sharp with respect to $||w||_{A_1} $ and with respect to $p$ . We also give a $L^{1,infty}(w)$ estimate, for a related problem of Muckenhoupt and Wheeden for $win A_1^+$ . We improve the classical results, for one-sided singular integrals, by putting in the inequalities a wider class of weights.
publishDate 2015
dc.date.none.fl_str_mv 2015-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/51845
Riveros, Maria Silvina; Vidal, Raúl Emilio; Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals; Element; Mathematical Inequalities & Applications; 8; 3; 7-2015; 1087-1109
1331-4343
CONICET Digital
CONICET
url http://hdl.handle.net/11336/51845
identifier_str_mv Riveros, Maria Silvina; Vidal, Raúl Emilio; Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals; Element; Mathematical Inequalities & Applications; 8; 3; 7-2015; 1087-1109
1331-4343
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.7153/mia-18-84
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Element
publisher.none.fl_str_mv Element
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270090271129600
score 13.13397