Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals
- Autores
- Riveros, Maria Silvina; Vidal, Raúl Emilio
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we obtain for $T^+$, a one-sided singular integral given by a Calder´on-Zygmund kernel with support in $(-infty,0)$, a $L^p(w)$ bound when $win A_1^+$. A. K. Lerner, S. Ombrosi, and C. Pérez in ``$A_{1}$ Bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. extbf{16} no. 1, (2009), 149-156" proved that this bound is sharp with respect to $||w||_{A_1} $ and with respect to $p$ . We also give a $L^{1,infty}(w)$ estimate, for a related problem of Muckenhoupt and Wheeden for $win A_1^+$ . We improve the classical results, for one-sided singular integrals, by putting in the inequalities a wider class of weights.
Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
One-sided singular integrals
Sawyer weights
Weighted norm inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51845
Ver los metadatos del registro completo
| id |
CONICETDig_339ccdd17bd3827e50561513dc899d67 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51845 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integralsRiveros, Maria SilvinaVidal, Raúl EmilioOne-sided singular integralsSawyer weightsWeighted norm inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we obtain for $T^+$, a one-sided singular integral given by a Calder´on-Zygmund kernel with support in $(-infty,0)$, a $L^p(w)$ bound when $win A_1^+$. A. K. Lerner, S. Ombrosi, and C. Pérez in ``$A_{1}$ Bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. extbf{16} no. 1, (2009), 149-156" proved that this bound is sharp with respect to $||w||_{A_1} $ and with respect to $p$ . We also give a $L^{1,infty}(w)$ estimate, for a related problem of Muckenhoupt and Wheeden for $win A_1^+$ . We improve the classical results, for one-sided singular integrals, by putting in the inequalities a wider class of weights.Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElement2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/51845Riveros, Maria Silvina; Vidal, Raúl Emilio; Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals; Element; Mathematical Inequalities & Applications; 8; 3; 7-2015; 1087-11091331-4343CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.7153/mia-18-84info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:58:21Zoai:ri.conicet.gov.ar:11336/51845instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:58:22.172CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals |
| title |
Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals |
| spellingShingle |
Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals Riveros, Maria Silvina One-sided singular integrals Sawyer weights Weighted norm inequalities |
| title_short |
Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals |
| title_full |
Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals |
| title_fullStr |
Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals |
| title_full_unstemmed |
Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals |
| title_sort |
Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals |
| dc.creator.none.fl_str_mv |
Riveros, Maria Silvina Vidal, Raúl Emilio |
| author |
Riveros, Maria Silvina |
| author_facet |
Riveros, Maria Silvina Vidal, Raúl Emilio |
| author_role |
author |
| author2 |
Vidal, Raúl Emilio |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
One-sided singular integrals Sawyer weights Weighted norm inequalities |
| topic |
One-sided singular integrals Sawyer weights Weighted norm inequalities |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper we obtain for $T^+$, a one-sided singular integral given by a Calder´on-Zygmund kernel with support in $(-infty,0)$, a $L^p(w)$ bound when $win A_1^+$. A. K. Lerner, S. Ombrosi, and C. Pérez in ``$A_{1}$ Bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. extbf{16} no. 1, (2009), 149-156" proved that this bound is sharp with respect to $||w||_{A_1} $ and with respect to $p$ . We also give a $L^{1,infty}(w)$ estimate, for a related problem of Muckenhoupt and Wheeden for $win A_1^+$ . We improve the classical results, for one-sided singular integrals, by putting in the inequalities a wider class of weights. Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
| description |
In this paper we obtain for $T^+$, a one-sided singular integral given by a Calder´on-Zygmund kernel with support in $(-infty,0)$, a $L^p(w)$ bound when $win A_1^+$. A. K. Lerner, S. Ombrosi, and C. Pérez in ``$A_{1}$ Bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. extbf{16} no. 1, (2009), 149-156" proved that this bound is sharp with respect to $||w||_{A_1} $ and with respect to $p$ . We also give a $L^{1,infty}(w)$ estimate, for a related problem of Muckenhoupt and Wheeden for $win A_1^+$ . We improve the classical results, for one-sided singular integrals, by putting in the inequalities a wider class of weights. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51845 Riveros, Maria Silvina; Vidal, Raúl Emilio; Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals; Element; Mathematical Inequalities & Applications; 8; 3; 7-2015; 1087-1109 1331-4343 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/51845 |
| identifier_str_mv |
Riveros, Maria Silvina; Vidal, Raúl Emilio; Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-side singular integrals; Element; Mathematical Inequalities & Applications; 8; 3; 7-2015; 1087-1109 1331-4343 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.7153/mia-18-84 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
| dc.publisher.none.fl_str_mv |
Element |
| publisher.none.fl_str_mv |
Element |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598406371475456 |
| score |
12.6313505 |