Semi-Heyting Algebras and Identities of Associative Type
- Autores
- Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An algebra A = ⟨A, ∨, ∧, →, 0, 1⟩ is a semi-Heyting algebra if ⟨A, ∨, ∧, 0, 1⟩ is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras. They share several important properties with Heyting algebras. An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety ℋ of asociative type of length 3. Our main result shows that there are 3 such subvarities of ℋ.
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics; Estados Unidos - Materia
-
SEMI-HEYTING ALGEBRA
HEYTING ALGEBRA
IDENTITY OF ASSOCIATIVE TYPE
SUBVARIETY OF ASSOCIATIVE TYPE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/137819
Ver los metadatos del registro completo
| id |
CONICETDig_bbc80e475a7fd0997640e27dddd66d91 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/137819 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Semi-Heyting Algebras and Identities of Associative TypeCornejo, Juan ManuelSankappanavar, Hanamantagouda P.SEMI-HEYTING ALGEBRAHEYTING ALGEBRAIDENTITY OF ASSOCIATIVE TYPESUBVARIETY OF ASSOCIATIVE TYPEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An algebra A = ⟨A, ∨, ∧, →, 0, 1⟩ is a semi-Heyting algebra if ⟨A, ∨, ∧, 0, 1⟩ is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras. They share several important properties with Heyting algebras. An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety ℋ of asociative type of length 3. Our main result shows that there are 3 such subvarities of ℋ.Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics; Estados UnidosUniversity of Lodz2019-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137819Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Semi-Heyting Algebras and Identities of Associative Type; University of Lodz; Bulletin Of The Section Of Logic; 48; 2; 30-6-2019; 117-1350138-0680CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://czasopisma.uni.lodz.pl/bulletin/article/view/5436info:eu-repo/semantics/altIdentifier/doi/10.18778/0138-0680.48.2.03info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:26:11Zoai:ri.conicet.gov.ar:11336/137819instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:26:11.99CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Semi-Heyting Algebras and Identities of Associative Type |
| title |
Semi-Heyting Algebras and Identities of Associative Type |
| spellingShingle |
Semi-Heyting Algebras and Identities of Associative Type Cornejo, Juan Manuel SEMI-HEYTING ALGEBRA HEYTING ALGEBRA IDENTITY OF ASSOCIATIVE TYPE SUBVARIETY OF ASSOCIATIVE TYPE |
| title_short |
Semi-Heyting Algebras and Identities of Associative Type |
| title_full |
Semi-Heyting Algebras and Identities of Associative Type |
| title_fullStr |
Semi-Heyting Algebras and Identities of Associative Type |
| title_full_unstemmed |
Semi-Heyting Algebras and Identities of Associative Type |
| title_sort |
Semi-Heyting Algebras and Identities of Associative Type |
| dc.creator.none.fl_str_mv |
Cornejo, Juan Manuel Sankappanavar, Hanamantagouda P. |
| author |
Cornejo, Juan Manuel |
| author_facet |
Cornejo, Juan Manuel Sankappanavar, Hanamantagouda P. |
| author_role |
author |
| author2 |
Sankappanavar, Hanamantagouda P. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
SEMI-HEYTING ALGEBRA HEYTING ALGEBRA IDENTITY OF ASSOCIATIVE TYPE SUBVARIETY OF ASSOCIATIVE TYPE |
| topic |
SEMI-HEYTING ALGEBRA HEYTING ALGEBRA IDENTITY OF ASSOCIATIVE TYPE SUBVARIETY OF ASSOCIATIVE TYPE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
An algebra A = ⟨A, ∨, ∧, →, 0, 1⟩ is a semi-Heyting algebra if ⟨A, ∨, ∧, 0, 1⟩ is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras. They share several important properties with Heyting algebras. An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety ℋ of asociative type of length 3. Our main result shows that there are 3 such subvarities of ℋ. Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics; Estados Unidos |
| description |
An algebra A = ⟨A, ∨, ∧, →, 0, 1⟩ is a semi-Heyting algebra if ⟨A, ∨, ∧, 0, 1⟩ is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras. They share several important properties with Heyting algebras. An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety ℋ of asociative type of length 3. Our main result shows that there are 3 such subvarities of ℋ. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-06-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/137819 Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Semi-Heyting Algebras and Identities of Associative Type; University of Lodz; Bulletin Of The Section Of Logic; 48; 2; 30-6-2019; 117-135 0138-0680 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/137819 |
| identifier_str_mv |
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Semi-Heyting Algebras and Identities of Associative Type; University of Lodz; Bulletin Of The Section Of Logic; 48; 2; 30-6-2019; 117-135 0138-0680 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://czasopisma.uni.lodz.pl/bulletin/article/view/5436 info:eu-repo/semantics/altIdentifier/doi/10.18778/0138-0680.48.2.03 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
University of Lodz |
| publisher.none.fl_str_mv |
University of Lodz |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977906916032512 |
| score |
13.087074 |